Content deleted Content added
m Task 18 (cosmetic): eval 50 templates: del empty params (16×); hyphenate params (7×); |
m date format audit, minor formatting |
||
Line 1:
{{Use American English|date=January 2019}}▼
{{Short description|Algorithms run on quantum computers, typically relying on superposition and/or entanglement}}
▲{{Use American English|date=January 2019}}
In [[quantum computing]], a '''quantum algorithm''' is an [[algorithm]] which runs on a realistic model of [[quantum computation]], the most commonly used model being the [[quantum circuit]] model of computation.<ref>{{cite book|title=Quantum Computation and Quantum Information|last1=Nielsen|first1=Michael A.|last2=Chuang|first2=Isaac L.|publisher=[[Cambridge University Press]]|year=2000|isbn=978-0-521-63503-5|author-link=Michael Nielsen|author-link2=Isaac Chuang|title-link=Quantum Computation and Quantum Information}}</ref><ref>{{cite arXiv|eprint=0808.0369|class=quant-ph|first=M.|last=Mosca|author-link=Michele Mosca|title=Quantum Algorithms|date=2008}}</ref> A classical (or non-quantum) algorithm is a finite sequence of instructions, or a step-by-step procedure for solving a problem, where each step or instruction can be performed on a classical [[computer]]. Similarly, a quantum algorithm is a step-by-step procedure, where each of the steps can be performed on a [[quantum computer]]. Although all classical algorithms can also be performed on a quantum computer,<ref>{{Cite book|title = Quantum Computer Science|url = https://books.google.com/books?id=-wkJIuw0YRsC&q=quantum%2520computer%2520equivalent%2520classical%2520computer&pg=PA23|publisher = Morgan & Claypool Publishers|date = 2009-01-01|isbn = 9781598297324|first1 = Marco|last1 = Lanzagorta|first2 = Jeffrey K.|last2 = Uhlmann}}</ref>{{rp|126}} the term quantum algorithm is usually used for those algorithms which seem inherently quantum, or use some essential feature of quantum computation such as [[quantum superposition]] or [[quantum entanglement]].
Line 86 ⟶ 87:
===Boson sampling problem===
{{main|Boson sampling}}
The Boson Sampling Problem in an experimental configuration assumes<ref>{{cite web|last1=Ralph|first1=T.C.|title=Figure 1: The boson-sampling problem|url=http://www.nature.com/nphoton/journal/v7/n7/fig_tab/nphoton.2013.175_F1.html|website=Nature Photonics|publisher=Nature|accessdate=12 September 2014}}</ref> an input of [[boson]]s (ex. photons of light) of moderate number getting randomly scattered into a large number of output modes constrained by a defined [[unitarity]]. The problem is then to produce a fair sample of the [[probability distribution]] of the output which is dependent on the input arrangement of bosons and the Unitarity.<ref>{{cite journal|last1=Lund|first1=A.P.|last2=Laing|first2=A.|last3=Rahimi-Keshari|first3=S.|last4=Rudolph|first4=T.|last5=O'Brien|first5=J.L.|last6=Ralph|first6=T.C.|title=Boson Sampling from Gaussian States|journal=Phys. Rev. Lett.|date=
===Estimating Gauss sums===
Line 461 ⟶ 462:
==References==
{{reflist
==External links==
Line 475 ⟶ 476:
{{Quantum mechanics topics}}
{{emerging technologies|quantum=yes|other=yes}}
▲{{Use dmy dates|date=September 2011}}
{{DEFAULTSORT:Quantum Algorithm}}
|