Ring learning with errors key exchange: Difference between revisions

Content deleted Content added
m MOS:RADICAL, convert special characters (via WP:JWB)
m v2.04 - Repaired 1 link to disambiguation page - (You can help) - Oded Regev
Line 6:
Since the 1980s the security of cryptographic [[key exchange]]s and [[digital signature]]s over the Internet has been primarily based on a small number of [[public key]] algorithms. The security of these algorithms is based on a similarly small number of computationally hard problems in classical computing. These problems are the difficulty of [[Integer factorization|factoring the product of two carefully chosen prime numbers]], the difficulty to compute [[discrete logarithms]] in a carefully chosen finite field, and the difficulty of computing discrete logarithms in a carefully chosen [[elliptic curve]] group. These problems are very difficult to solve on a classical computer (the type of computer the world has known since the 1940s through today) but are rather easily solved by a relatively small [[Quantum computing|quantum computer]] using only 5 to 10 thousand of bits of memory. There is optimism in the computer industry that larger scale quantum computers will be available around 2030. If a [[quantum computer]] of sufficient size were built, all of the public key algorithms based on these three classically hard problems would be insecure. This public key cryptography is used today to secure Internet websites, protect computer login information, and prevent our computers from accepting malicious software.
 
Cryptography that is not susceptible to attack by a quantum computer is referred to as [[post-quantum cryptography|quantum safe]], or [[post-quantum cryptography]]. One class of quantum resistant cryptographic algorithms is based on a concept called "[[learning with errors]]" introduced by [[Oded Regev (computer scientist)|Oded Regev]] in 2005.<ref name=":4">{{Cite book|chapter = On Lattices, Learning with Errors, Random Linear Codes, and Cryptography|publisher = ACM|journal = Proceedings of the Thirty-seventh Annual ACM Symposium on Theory of Computing|date = 2005|___location = New York, NY, USA|isbn = 978-1-58113-960-0|pages = 84–93|series = STOC '05|doi = 10.1145/1060590.1060603|first = Oded|last = Regev|title = Proceedings of the thirty-seventh annual ACM symposium on Theory of computing - STOC '05|citeseerx = 10.1.1.110.4776|s2cid = 53223958}}</ref> A specialized form of Learning with errors operates within the [[polynomial ring|ring of polynomials]] over a [[finite field]]. This specialized form is called [[ring learning with errors]] or [[ideal lattice cryptography|RLWE]].
 
There are a variety of cryptographic algorithms which work using the RLWE paradigm. There are [[Public-key cryptography|public-key encryption]] algorithms, [[homomorphic encryption]] algorithms, and [[Ring learning with errors signature|RLWE digital signature]] algorithms in addition to the public key, key exchange algorithm presented in this article