Content deleted Content added
Line 94:
! style="background: f5f5f5;" |'''Proof that for all ''n''{{space|hair|2}}: {{nowrap|{{space|thin|2}}''x''<sub>''n''</sub> {{space|hair|2}}∉ (''a''<sub>''n''</sub>, ''b''<sub>''n''</sub>)}}''' {{space|thin|2}}
|- style="text-align: left; vertical-align: top; background: white"
| style="padding-left: 1em; padding-right: 1em" | This [[lemma (mathematics)|lemma]] is used by cases 2 and 3. It is implied by the stronger lemma: For all ''n'', (''a''<sub>''n''</sub>, ''b''<sub>''n''</sub>) excludes ''x''<sub>1</sub>, ..., ''x''<sub>2''n''</sub>. This is proved by [[mathematical induction|induction]]. Basis step: Since the [[Endpoints (interval)|endpoints]] of (''a''<sub>1</sub>, ''b''<sub>1</sub>) are ''x''<sub>''1''</sub> and ''x''<sub>''2''</sub> and an open interval excludes its endpoints, (''a''<sub>1</sub>, ''b''<sub>1</sub>) excludes ''x''<sub>1</sub>, ''x''<sub>2</sub>. Inductive step: Assume that (''a''<sub>''n''</sub>, ''b''<sub>''n''</sub>) excludes ''x''<sub>1</sub>, ..., ''x''<sub>2''n''</sub>. Since (''a''<sub>''n''+1</sub>, ''b''<sub>''n''+1</sub>) is a subset of (''a''<sub>''n''</sub>, ''b''<sub>''n''</sub>) and its endpoints are ''x''<sub>2''
|}
{{Anchor|Case3}}[[File:Cantor's first uncountability proof Case 3 svg.svg|thumb|350px|alt=Illustration of case 3. Real line containing [''a'', ''b''] that contains nested intervals (''a''<sub>''n''</sub>, ''b''<sub>''n''</sub>) for ''n'' = 1 to ∞. These intervals converge to the closed interval [a<sub>∞</sub>, b<sub>∞</sub>]. The number y is in this interval.|Case 3: ''a''<sub>∞</sub> < ''b''<sub>∞</sub>]]
|