Content deleted Content added
Line 131:
==Control and Actuator Systems==
There is an ongoing effort to incorporate CNN processors into sensory-computing-actuating machines as part of the emerging field of [[Cellular Machines]]. The basic premise is to create an integrated system that uses CNN processors for the sensory signal-processing and potentially the decision-making and control. The reason is that CNN processors can provide a low power, small size, and eventually low-cost computing and actuating system suited for Cellular Machines. These Cellular Machines will eventually create a Sensor-Actuator Network (SAN),<ref>M. Haenggi, "Mobile Sensor-Actuator Networks: Opportunities and Challenges", Int’l Workshop on Cellular Neural Networks and Their Applications, 2002.</ref> a type of Mobile Ad Hoc Networks (MANET) which can be used for military intelligence gathering, surveillance of inhospitable environments, maintenance of large areas, planetary exploration, etc.
CNN processors have been proven versatile enough for some control functions. They have been used to optimize function via a genetic algorithm, to measure distances, to perform optimal path-finding in a complex, dynamic environment, and theoretically can be used to learn and associate complex stimuli. They have also been used to create antonymous gaits and low-level motors for robotic [[Nematode|nematodes]], spiders, and lamprey gaits using a Central Pattern Generator (CPG). They were able to function using only feedback from the environment, allowing for a robust, flexible, biologically inspired robot motor system. CNN-based systems were able to operate in different environments and still function if some of the processing units are disabled.
Line 139:
CNN processors are [[Neuromorphic engineering|neuromorphic]] processors, meaning that they emulate certain aspects of [[biological neural network]]s. The original CNN processors were based on mammalian retinas, which consist of a layer of [[Photodetector|photodetectors]] connected to several layers of locally coupled neurons. This makes CNN processors part of an interdisciplinary research area whose goal is to design systems that leverage knowledge and ideas from neuroscience and contribute back via real-world validation of theories. CNN processors have implemented a real-time system that replicates mammalian retinas, validating that the original CNN architecture chosen modeled the correct aspects of the biological neural networks used to perform the task in mammalian life. However, CNN processors are not limited to verifying biological neural networks associated with vision processing; they have been used to simulate dynamic activity seen in mammalian neural networks found in the olfactory bulb and locust [[antennal lobe]], responsible for pre-processing sensory information to detect differences in repeating patterns.
CNN processors are being used to understand systems that can be modeled using simple, coupled units, such as living cells, biological networks, physiological systems, and ecosystems. The CNN architecture captures some of the dynamics often seen in nature and is simple enough to analyze and conduct experiments. They are also being used for [[stochastic]] simulation techniques, which allow scientists to explore spin problems, population dynamics, lattice-based gas models, [[percolation]], and other phenomena. Other simulation applications include heat transfer, mechanical vibrating systems, protein production, [[Josephson
CNN processors have been used to research a variety of mathematical concepts, such as researching non-equilibrium systems, constructing non-linear systems of arbitrary complexity using a collection of simple, well-understood dynamic systems, studying emergent chaotic dynamics, generating chaotic signals, and in general discovering new dynamic behavior. They are often used in researching systemics, a
==Notes==
Line 257:
*C. Lin and Y. Shou, "Texture Classification and Representation by CNN based Feature Extraction", Int’l Workshop on Cellular Neural Networks and Their Applications, 2005.
*T. Roska and L. O. Chua, "The CNN Universal Machine: 10 Years Later, Journal of Circuits, Systems, and Computers", Int’l Journal of Bifurcation and Chaos, 12(4):377-388, 2003.
*R. Bise, N. Takahashi and T. Nishi, "On the Design Method of Cellular Neural Networks for Associate Memories Based on Generalized Eigenvalue Problem", Int’l Workshop on Cellular Neural Networks and Their Applications, 2002.
*D. Balya and V. Galt, "Analogic Implementation of the Genetic Algorithm", Int’l Workshop on Cellular Neural Networks and Their Applications, 2006.
Line 277 ⟶ 276:
*P. Szolgay, T. Hidvegi, Z. Szolgay and P. Kozma, "A Comparison of the Different CNN Implementations in Solving the Problem of Spatiotemporal Dynamics in Mechanical Systems ", Int’l Workshop on Cellular Neural Networks and Their Applications, 2000.
*W. Samarrai, J. Yeol, I. Bajis and Y. Ryu, "System Biology Modeling of Protein Process using Deterministic Finite Automata (DFA)", Int’l Workshop on Cellular Neural Networks and Their Applications, 2005.
*R. Brown and L. Chua, "Chaos or Turbulence", Int’l Journal of Bifurcation and Chaos, 2(4):1005-1009, 1992.
*E. Gunay, M. Alci and S. Parmaksizoglu, "N-Scroll Generation in SC-CNN via Neuro Fuzzy Based Non-Linear Function", Int’l Workshop on Cellular Neural Networks and Their Applications, 2006.
|