Content deleted Content added
citations |
citations |
||
Line 94:
Another company, AnaLogic Computers was founded in 2000 by many of the same researchers behind the first algorithmically programmable CNN Universal Processor. In 2003, AnaLogic Computers developed a PCI-X visual processor board that included the ACE 4K processor,<ref>{{Cite web|title=StackPath|url=https://www.vision-systems.com/home/article/16738443/cellular-device-processes-at-ultrafast-speeds|access-date=2020-12-27|website=www.vision-systems.com}}</ref> with a [[Texas Instruments|Texas Instrument]] DIP module and a high-speed frame-grabber. This allowed CNN processing to be easily included in a desktop computer. In 2006, AnaLogic Computers developed their Bi-I Ultra High Speed Smart Camera product line, which includes the ACE 4K processor in their high-end models.<ref>A. Rodríguez-Vázquez, G. Liñán-Cembrano, L. Carranza, E. Roca-Moreno, R. Carmona-Galán, F. Jiménez-Garrido, R. Domínguez-Castro, and S. Meana, "ACE16k: The Third Generation of Mixed-Signal SIMD-CNN ACE Chips Toward VSoCs," IEEE Trans. on Circuits and Systems - I, 51(5): 851-863, 2004.</ref>
In 2006, Roska et al. published a paper on designing a Bionic Eyeglass for AnaLogic. The Bionic Eyeglass is a dual-camera, wearable platform, based on the Bi-I Ultra High Speed Smart Camera, designed to provide assistance to blind people. Some of its functions include route number recognition and color processing.<ref>{{Cite journal|last=Roska|first=T.|last2=Balya|first2=D.|last3=Lazar|first3=A.|last4=Karacs|first4=K.|last5=Wagner|first5=R.|last6=Szuhaj|first6=M.|date=2006-05|title=System aspects of a bionic eyeglass|url=https://ieeexplore.ieee.org/document/1692547|journal=2006 IEEE International Symposium on Circuits and Systems|pages=4 pp.–164|doi=10.1109/ISCAS.2006.1692547}}</ref><ref>K. Karacst and T. Roskatt, "Route Number Recognition of Public Transport Vehicles via the Bionic Eyeglass", Int’l Workshop on Cellular Neural Networks and Their Applications, 2006.</ref><ref>R. Wagner and M. Szuhajt, "Color Processing in Wearable Bionic Glasses"</ref>
=== Analog CNN processors ===
Line 118:
=== Image processing ===
CNN processors were designed to perform image processing; specifically, real-time ultra-high frame-rate (>10,000 frame/s) processing for applications like particle detection in jet engine fluids and spark-plug detection. Currently, CNN processors can achieve up to 50,000 frames per second, and for certain applications such as missile tracking, flash detection, and spark-plug diagnostics these microprocessors have outperformed a conventional [[supercomputer]]. CNN processors lend themselves to local, low-level, processor intensive operations and have been used in feature extraction,<ref>O. Lahdenoja, M. Laiho and A. Paasio, "Local Binary Pattern Feature Vector Extraction with CNN", Int’l Workshop on Cellular Neural Networks and Their Applications, 2005.</ref> level and gain adjustments, color constancy detection,<ref>L. Torok and A. Zarandy, "CNN Based Color Constancy Algorithm", Int’l Workshop on Cellular Neural Networks and Their Applications, 2002.</ref> contrast enhancement, [[deconvolution]], [[image compression]],<ref>P. Venetianer and T. Roska, "Image Compression by Cellular Neural Networks," IEEE Trans. Circuits Syst., 45(3): 205-215, 1998.</ref><ref>R. Dogarut, R. Tetzlaffl and M. Glesner, "Semi-Totalistic CNN Genes for Compact Image Compression", Int’l Workshop on Cellular Neural Networks and Their Applications, 2006.</ref> motion estimation,<ref>Y. Cheng, J. Chung, C. Lin and S. Hsu, "Local Motion Estimation Based On Cellular Neural Network Technology for Image Stabilization Processing", Int’l Workshop on Cellular Neural Networks and Their Applications, 2005.</ref><ref>A. Gacsadi, C. Grava, V. Tiponut, and P. Szolgay, "A CNN Implementation of the Horn & Schunck Motion Estimation Method", Int’l Workshop on Cellular Neural Networks and Their Applications, 2006.</ref> image encoding, image decoding, image segmentation,<ref>S. Chen, M. Kuo and J. Wang, "Image Segmentation Based on Consensus Voting", Int’l Workshop on Cellular Neural Networks and Their Applications, 2005.</ref><ref>G. Grassi, E. Sciascio, A. Grieco and P. Vecchio, "A New Object-oriented Segmentation Algorithm based on CNNs - Part II: Performance Evaluation", Int’l Workshop on Cellular Neural Networks and Their Applications, 2005.</ref> orientation preference maps, pattern learning/recognition, multi-target tracking, image stabilization, resolution enhancement, image deformations and mapping, image inpainting, optical flow, contouring, [[moving object detection]],<ref>G. Costantini, D. Casali, and R. Perfetti, "Detection of Moving Objects in a Binocular Video Sequence", Int’l Workshop on Cellular Neural Networks and Their Applications, 2006.</ref> axis of symmetry detection,<ref>G Costantini, D. Casafi., and R. Perfetti, "A New CNN-based Method for Detection of the Axis of Symmetry.", Int’l Workshop on Cellular Neural Networks and Their Applications, 2006.</ref> and [[image fusion]].<ref>I. Szatmari, P. Foldesy, C. Rekeczky and A. Zarandy, "Image Processing Library for the Aladdin Computer", Int’l Workshop on Cellular Neural Networks and Their Applications, 2005.</ref><ref>I. Szatmari, P. Foldesy, C. Rekeczky and A. Zarandy, "Image processing library for the Aladdin Visual Computer", Int’l Workshop on Cellular Neural Networks and Their Applications, 2002.</ref><ref>K. Wiehler, M. Perezowsky, R. Grigat, "A Detailed Analysis of Different CNN Implementations for a Real-Time Image Processing System", Int’l Workshop on Cellular Neural Networks and Their Applications, 2000.</ref>
Due to their processing capabilities and flexibility, CNN processors have been used and [[Prototype|prototyped]] for novel field applications such as flame analysis for monitoring combustion at a waste [[Incineration|incinerator]],<ref>L. Bertucco, A. Fichaa, G. Nmari and A. Pagano, "A Cellular Neural Networks Approach to Flame Image Analysis for Combustion Monitoring", Int’l Workshop on Cellular Neural Networks and Their Applications, 2000.</ref> mine-detection using [[infrared]] imagery, [[calorimeter]] cluster peak for [[high energy physics]],<ref>C. Baldanza, F. Bisi, M. Bruschi, I. D’Antone, S. Meneghini, M. Riui, M. Zufa, "A Cellular Neural Network For Peak Finding In High-Energy Physics", Int’l Workshop on Cellular Neural Networks and Their Applications, 2000.</ref> anomaly detection in potential field maps for geophysics, laser dot detection, metal inspection for detecting manufacturing defects, and [[Seismology|seismic]] horizon picking. They have also been used to perform [[Biometrics|biometric]] functions<ref>R. Dogaru and I. Dogaru, "Biometric Authentication Based on Perceptual Resonance Between CNN Emergent Patterns and Humans", Int’l Workshop on Cellular Neural Networks and Their Applications, 2002.</ref> such as [[fingerprint recognition]],<ref>T. Su, Y. Du, Y. Cheng, and Y. Su, "A Fingerprint Recognition System Using Cellular Neural Networks", Int’l Workshop on Cellular Neural Networks and Their Applications, 2006.</ref> vein feature extraction, face tracking,<ref>S. Xavier-de-Souza, M. Van Dyck, J. Suykens and J. Vandewalle, "Fast and Robust Face Tracking for CNN Chips: Application to Wheelchair Driving", Int’l Workshop on Cellular Neural Networks and Their Applications, 2006.</ref> and generating visual stimuli via emergent patterns to gauge perceptual [[Resonance|resonances]].
=== Biology and medicine ===
Line 179:
*K. Karahaliloglu, P. Gans, N. Schemm, and S. Balkir, "Optical sensor integrated CNN for Real-time Computational Applications", IEEE Int’l Symposium on Circuits and Systems, pp. 21–24, 2006.
*C. Dominguez-Matas, R. Carmona-Galan, F. Sainchez-Fernaindez, A. Rodriguez-Vazquez, "3-Layer CNN Chip for Focal-Plane Complex Dynamics with Adaptive Image Capture", Int’l Workshop on Cellular Neural Networks and Their Applications, 2006.
*C. Wu and C. Cheng, "The Design of Cellular Neural Network with Ratio Memory for Pattern Learning and Recognition", Int’l Workshop on Cellular Neural Networks and Their Applications, 2000.
*W. Yen, R. Chen and J. Lai, "Design of Min/Max Cellular Neural Networks in CMOS Technology", Int’l Workshop on Cellular Neural Networks and Their Applications, 2002.
Line 192 ⟶ 189:
*W. Fangt, C. Wang and L. Spaanenburg, "In Search of a Robust Digital CNN System" Int’l Workshop on Cellular Neural Networks and Their Applications, 2006.
*Z. Voroshazit, Z. Nagyt, A. Kiss and P. Szolgay, "An Embedded CNN-UM Global Analogic Programming Unit Implementation on FPGA", Int’l Workshop on Cellular Neural Networks and Their Applications, 2006.
*
*V. Tavsanoglu, "Jacobi’s Iterative Method for Solving Linear Equations and the Simulation of Linear CNN", Int’l Workshop on Cellular Neural Networks and Their Applications, 2006.
*B. Shi, "Estimating the Steady State using Forward and Backward Recursions", Int’l Workshop on Cellular Neural Networks and Their Applications, 2006.
Line 200 ⟶ 197:
*A. Zarandry, S. Espejo, P. Foldesy, L. Kek, G. Linan, C. Rekeczky, A. Rodriguez-Vazquez, T. Roska, I. Szatmari, T. Sziranyi and P. Szolgay, "CNN Technology in Action ", Int’l Workshop on Cellular Neural Networks and Their Applications, 2000.
*L. Chua, S. Yoon and R. Dogaru, "A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science. Part I: Threshold of Complexity," Int’l Journal of Bifurcation and Chaos, 12(12):2655-2766, 2002.
*C. Dominguez-Matas, F. Sainchez-Femaindez, R. Carmona-Galan, and E. Roca-Moreno, "Experiments on Global and Local Adaptation to Illumination Conditions based on Focal Plane Average Computation", Int’l Workshop on Cellular Neural Networks and Their Applications, 2006.
*P. Ecimovic and J. Wu, "Delay Driven Contrast Enhancement using a Cellular Neural Network with State Dependent Delay", Int’l Workshop on Cellular Neural Networks and Their Applications, 2002.
Line 223 ⟶ 219:
*K. Huang, C. Chang, W. Hsieh, S. Hsieh, L. Wang and F. Tsai, "Cellular Neural Network For Seismic Horizon Picking", Int’l Workshop on Cellular Neural Networks and Their Applications, 2005.
*T. Su, Y. Du, Y. Cheng, and Y. Su, "A Fingerprint Recognition System Using Cellular Neural Networks", Int’l Workshop on Cellular Neural Networks and Their Applications, 2006.
*Q. Feng, S. Yu and H. Wang, "An New Automatic Nucleated Cell Counting Method With Improved Cellular Neural Networks (ICNN)", Int’l Workshop on Cellular Neural Networks and Their Applications, 2006.
*T. Szabot and P. Szolgay, "CNN-UM-Based Methods Using Deformable Contours on Smooth Boundaries", Int’l Workshop on Cellular Neural Networks and Their Applications, 2006.
|