Content deleted Content added
→A misconception about Cantor's work: Changed "this" to "his". |
|||
Line 420:
[[File:Oskar Perron.jpg|thumb|upright=0.93|alt=Oskar Perron reading a book while standing in front of a blackboard containing equations|Oskar Perron, {{spaces|4|hair}}c. 1948]]
The correspondence containing Cantor's non-constructive reasoning was published in 1937. By then, other mathematicians had rediscovered his non-constructive, reverse-order proof. As early as 1921, this proof was called "Cantor's proof" and criticized for not producing any transcendental numbers.<ref>{{harvnb|Gray|1994|pp=827–828}}.</ref> In that year, [[Oskar Perron]] gave the reverse-order proof and then stated: "… Cantor's proof for the existence of transcendental numbers has, along with its simplicity and elegance, the great disadvantage that it is only an existence proof; it does not enable us to actually specify even a single transcendental number."<ref>{{harvnb|Perron|1921|p=162}}</ref>{{efn-ua|By "Cantor's proof," Perron does not mean that it is a proof published by Cantor. Rather, he means that the proof only uses arguments that Cantor published. For example, to obtain a real not in a given sequence, Perron follows Cantor's 1874 proof except for one modification: he uses Cantor's 1891 diagonal argument instead of his 1874 nested intervals argument to obtain a real. Cantor never used his diagonal argument to reprove
[[File:Adolf Abraham Halevi Fraenkel.jpg|thumb|upright=0.93|alt=refer to caption|Abraham Fraenkel, between 1939 and 1949]]
|