Uniqueness theorem for Poisson's equation: Difference between revisions

Content deleted Content added
Line 25:
Let us first consider the case where [[Dirichlet boundary condition|Dirichlet boundary conditions]] are specified as <math>\varphi = 0</math> on the boundary of the region. These follow because the boundary conditions and the charge distributions are the same for both 'solutions'.
 
By the application ofapplying the [[Vector calculus identities#Divergence 2|vector differential identity]] we know that
 
:<math>\nabla \cdot (\varphi \, \nabla \varphi )= \, (\nabla \varphi )^2 + \varphi \, \nabla^2 \varphi.</math>
Line 35:
By taking the volume integral over the region, we find that
 
:<math>\int_V \mathbf{\nabla}\cdot(\varphi \, \mathbf{\nabla}\varphi) \, \mathrm{d}V= \int_V \mathbf{(\nabla}\varphi)\cdot( \mathbf{\nabla}\varphi) \, \mathrm{d}V= \int_V (\mathbf{\nabla}\varphi)^2 \, \mathrm{d}V.</math>
 
AndBy after aplyingapplying the [[divergence theorem]], we rewrite the expression above can be rewritten as
 
:<math>\int_{S} (\varphi \, \mathbf{\nabla}\varphi) \cdot \mathrm{d}\mathbf{S}= \int_V (\mathbf{\nabla}\varphi)^2 \, \mathrm{d}V. \qquad (2)</math>
 
where <math>S</math> is the boundary surface specified by the boundary conditions.