Content deleted Content added
Removed "more footnotes" template. |
Added "more citations" template to sections that need citations. |
||
Line 135:
[[File:Schematic Piles In Centrifuge Model.jpg|thumb|Schematic of a model containing piles in sloping ground. The dimensions are given in prototype scale. For this experiment the scale factor was 30 or 50.]]
[[File:BrandenbergSoilexcavation.jpg|thumb|Excavation of a centrifuge model after liquefaction and lateral spreading.]]
{{more citations needed section|date=January 2021}}
Large earthquakes are infrequent and unrepeatable but they can be devastating. All of these factors make it difficult to obtain the required data to study their effects by post earthquake field investigations. Instrumentation of full scale structures is expensive to maintain over the large periods of time that may elapse between major temblors, and the instrumentation may not be placed in the most scientifically useful locations. Even if engineers are lucky enough to obtain timely recordings of data from real failures, there is no guarantee that the instrumentation is providing repeatable data. In addition, scientifically educational failures from real earthquakes come at the expense of the safety of the public. Understandably, after a real earthquake, most of the interesting data is rapidly cleared away before engineers have an opportunity to adequately study the failure modes.
Line 141:
==Verification of numerical models==
{{more citations needed section|date=January 2021}}
Centrifuge tests can also be used to obtain experimental data to verify a design procedure or a computer model. The rapid development of computational power over recent decades has revolutionized engineering analysis. Many computer models have been developed to predict the behavior of geotechnical structures during earthquakes and other loads. Before a computer model can be used with confidence, it must be proven to be valid based on evidence. The meager and unrepeatable data provided by natural earthquakes, for example, is usually insufficient for this purpose. Verification of the validity of assumptions made by a computational algorithm is especially important in the area of geotechnical engineering due to the complexity of soil behavior. Soils exhibit highly non-linear behavior, their strength and stiffness depend on their stress history and on the water pressure in the pore fluid, all of which may evolve during the loading caused by an earthquake. The computer models which are intended to simulate these phenomena are very complex and require extensive verification. Experimental data from centrifuge tests is useful for verifying assumptions made by a computational algorithm. If the results show the computer model to be inaccurate, the centrifuge test data provides insight into the physical processes which in turn stimulates the development of better computer models.
|