Content deleted Content added
→Properties: central reflection => 180° rotation |
→Constructions: rewrite involute paragraph to use the rolling-line-segment description in a more integrated way |
||
Line 34:
Every [[regular polygon]] with an odd number of sides gives rise to a curve of constant width, a [[Reuleaux polygon]], formed from circular arcs centered at its vertices that pass through the two vertices farthest from the center. For instance, this construction generates a Reuleaux triangle from an equilateral triangle. Some irregular polygons also generate Reuleaux polygons.{{r|bs|cr}} The Reuleaux polygons are a special case of a more general construction, called by [[Martin Gardner]] the "crossed-lines method", in which any [[arrangement of lines]] in the plane (no two parallel), sorted into cyclic order by their slopes, are connected by a smooth curve formed from circular arcs between pairs of consecutive lines in the sorted order, centered at the crossing of these two lines. The radius of the first arc must be chosen large enough to cause all successive arcs to end on the correct side of the next crossing point; however, all sufficiently-large radii work. For two lines, this forms a circle; for three lines on the sides of an equilateral triangle, with the minimum possible radius, it forms a Reuleaux triangle, and for the lines of a regular [[star polygon]] it can form a Reuleaux polygon.{{r|gardner|bs}}
[[Leonhard Euler]] constructed curves of constant width
Another construction chooses half of the curve of constant width, meeting certain requirements, and forms from it a body of constant width having the given curve as part of its boundary. The construction begins with a convex curved arc, whose endpoints are the intended width <math>w</math> apart. The two endpoints must touch parallel supporting lines at distance <math>w</math> from each other. Additionally, each supporting line that touches another point of the arc must be tangent at that point to a circle of radius <math>w</math> containing the entire arc; this requirement prevents the [[curvature]] of the arc from being less than that of the circle. The completed body of constant width is then the intersection of the interiors of an infinite family of circles, of two types: the ones tangent to the supporting lines, and more circles of the same radius centered at each point of the given arc. This construction is universal: all curves of constant width may be constructed in this way.{{r|rt}} [[Victor Puiseux]], a 19th-century French mathematician, found curves of constant width containing elliptical arcs{{r|kearsley}} that can be constructed in this way from a [[semi-ellipse]]. To meet the curvature condition, the semi-ellipse should be bounded by the [[Semi-major and semi-minor axes|semi-major axis]] of its ellipse, and the ellipse should have [[Eccentricity (mathematics)|eccentricity]] at most <math>\tfrac{1}{2}\sqrt{3}</math>. Equivalently, the semi-major axis should be at most twice the semi-minor axis.{{r|bs}}
|