In mathematics, the sinhc function appears frequently in papers about optical scattering,[1] Heisenberg spacetime[2] and hyperbolic geometry.[3][better source needed] For , it is defined as[4][5]

The sinhc function is the hyperbolic analogue of the sinc function, defined by . It is a solution of the following differential equation:



Properties
The first-order derivative is given by
The Taylor series expansion is The Padé approximant is
In terms of other special functions
- , where is Kummer's confluent hypergeometric function.
- , where is the biconfluent Heun function.
- , where is a Whittaker function.
Gallery
See also
References
- ^ den Outer, P. N.; Lagendijk, Ad; Nieuwenhuizen, Th. M. (1993-06-01). "Location of objects in multiple-scattering media". Journal of the Optical Society of America A. 10 (6): 1209. doi:10.1364/JOSAA.10.001209. ISSN 1084-7529.
- ^ Körpinar, Talat (2014). "New Characterizations for Minimizing Energy of Biharmonic Particles in Heisenberg Spacetime". International Journal of Theoretical Physics. 53 (9): 3208–3218. doi:10.1007/s10773-014-2118-5. ISSN 0020-7748.
- ^ Nilgün Sönmez, A Trigonometric Proof of the Euler Theorem in Hyperbolic Geometry, International Mathematical Forum, 4, 2009, no. 38, 1877–1881
- ^ ten Thije Boonkkamp, J. H. M.; van Dijk, J.; Liu, L.; Peerenboom, K. S. C. (2012). "Extension of the Complete Flux Scheme to Systems of Conservation Laws". Journal of Scientific Computing. 53 (3): 552–568. doi:10.1007/s10915-012-9588-5. ISSN 0885-7474.
- ^ Weisstein, Eric W. "Sinhc Function". mathworld.wolfram.com. Retrieved 2022-11-17.