This is an old revision of this page, as edited by PAR(talk | contribs) at 01:04, 20 December 2007(Added energy of deformation, fixed some problems). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.Revision as of 01:04, 20 December 2007 by PAR(talk | contribs)(Added energy of deformation, fixed some problems)
Linear elasticity is the mathematical study of how solid objects deform and become internally stressed due to prescribed loading conditions. Linear elasticity relies upon the continuum hypothesis and is applicable at macroscopic (and sometimes microscopic) length scales. Linear elasticity is a simplification of the more general nonlinear theory of elasticity and is a branch of continuum mechanics. The fundamental "linearizing" assumptions of linear elasticity are: "small" deformations (or strains) and linear relationships between the components of stress and strain. In addition linear elasticity is only valid for stress states that do not produce yielding. These assumptions are reasonable for many engineering materials and engineering design scenarios. Linear elasticity is therefore used extensively in structural analysis and engineering design, often through the aid of finite element analysis. This article presents a summary of some of the basic equations used to describe linear elasticity mathematically in tensor notation. For an alternative presentation using engineering notation, see the article on 3-D elasticity.
The basic elastostatic equations are given by setting to zero in the dynamic equation. The elastostatic equations are shown in their full form on the 3-D elasticity article.
Just as a spring which is compressed or expanded holds potential energy, so a strained material will possess an energy density due to the deformation. The energy density due to deformation is given by:
where is the bulk modulus (or incompressibility), and is the shear modulus (or rigidity), two elastic moduli. If the material is homogeneous (i.e. the elasticity tensor is constant throughout the material), the three basic equations can be combined to form the elastodynamic equation:
and the constitutive equation may be written:
Elastostatics - the elastostatic equation
If we assume that a steady state has been achieved, in which there is no time dependence to any of the quantities involved, the elastodynamic equation becomes the elastostatic equation
Thomson's solution: point force at the origin of an infinite medium
The most important solution of this equation is for that of a force acting at a point in an infinite isotropic medium. This solution was found by William Thomson (later Lord Kelvin) in 1848 (Thomson 1848). This solution is the analog of Coulomb's law in electrostatics. A derivation is given in Template:Ref harvard. Defining
where is Poisson's ratio, the solution may be expressed as where is the force vector being applied at the point, and is a tensor Green's function which may be written in Cartesian coordinates as:
It may be also compactly written as:
and it may be explicitly written as:
In cylindrical coordinates () it may be written as:
It is particularly helpful to write the displacement in cylindrical coordinates for a point force directed along the z-axis. Defining and as unit vectors in the and directions respectively yields:
It can be seen that there is a component of the displacement in the direction of the force, which diminishes, as is the case for the potential in electrostatics, as 1/r. There is also an additional ρ-directed component.
Boussinesq's solution - point force at the origin of an infinite isotropic half-space
Another useful solution is that of a point force acting on the surface of an infinite half-space. It was derived by BoussinesqTemplate:Ref harvard and a derivation is given in Template:Ref harvard. In this case, the solution is again written as a Green's tensor which goes to zero at infinity, and the component of the stress tensor normal to the surface vanishes. This solution may be written as in Cartesian coordinates as:
where
is the bulk modulus (or incompressibility), and
is the shear modulus (or rigidity), two elastic moduli. If the material is homogeneous (i.e. the elasticity tensor is constant throughout the material), the acoustic operator becomes:
and the acoustic algebraic operator becomes
where
are the eigenvalues of with eigenvectors parallel and orthogonal to the propagation direction , respectively. In the seismological literature, the corresponding plane waves are called P-waves and S-waves (see Seismic wave).
Plane waves
A plane wave has the form
with of unit length.
It is a solution of the wave equation with zero forcing, if and only if
and constitute an eigenvalue/eigenvector pair of the
acoustic algebraic operator
This propagation condition may be written as
where
denotes propagation direction
and is phase velocity.