Coombs' method

This is an old revision of this page, as edited by Tomruen (talk | contribs) at 19:05, 27 August 2008 (References: notes). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

The Coombs' method, also called the Coombs rule[1] is a voting system created by Clyde Coombs used for single-winner elections in which each voter rank-orders the candidates. It is very similar to instant-runoff voting (also known as preferential voting or the Alternative Vote).

Procedures

Each voter rank-orders all of the candidates on their ballot. If at any time one candidate is ranked first (among non-eliminated candidates) by an absolute majority of the voters, then this is the winner. As long as this is not the case, the candidate which is ranked last (again among non-eliminated candidates) by the most (or a plurality of) voters is eliminated. (Conversely, in Instant Runoff Voting the candidate ranked first (among non-eliminated candidates) by the least amount of voters is eliminated.)

An example

 

Suppose that Tennessee is holding an election on the ___location of its capital. The population is concentrated around four major cities. All voters want the capital to be as close to them as possible. The options are:

  • Memphis, the largest city, but far from the others (42% of voters)
  • Nashville, near the center of the state (26% of voters)
  • Chattanooga, somewhat east (15% of voters)
  • Knoxville, far to the northeast (17% of voters)

The preferences of each region's voters are:

42% of voters
Far-West
26% of voters
Center
15% of voters
Center-East
17% of voters
Far-East
  1. Memphis
  2. Nashville
  3. Chattanooga
  4. Knoxville
  1. Nashville
  2. Chattanooga
  3. Knoxville
  4. Memphis
  1. Chattanooga
  2. Knoxville
  3. Nashville
  4. Memphis
  1. Knoxville
  2. Chattanooga
  3. Nashville
  4. Memphis


Assuming all of the voters vote sincerely (strategic voting is discussed below), the results would be as follows, by percentage:

Coombs' method election results
City Round 1 Round 2
First Last First Last
Memphis 42 58 42 0
Nashville 26 0 26 68
Chattanooga 15 0 15
Knoxville 17 42 17
  • In the first round, no candidate has an absolute majority of first place votes (51).
  • Memphis, having the most last place votes (26+15+17=58), is therefore eliminated.
  • In the second round, Memphis is out of the running, and so must be factored out. Memphis was ranked first on Group A's ballots, so the second choice of Group A, Nashville, gets an additional 42 first place votes, giving it an absolute majority of first place votes (68 versus 15+17=32) thus making it the winner. Note that the last place votes are disregarded in the final round.

Note that although Coomb's method chose the Condorcet winner here, this is not necessarily the case.

Potential for strategic voting

The Coombs' method is vulnerable to three strategies:[citation needed] compromising, push-over and teaming.

See also

Notes

  1. ^ Grofman, Bernard, and Scott L. Feld (2004) "If you like the alternative vote (a.k.a. the instant runoff), then you ought to know about the Coombs rule," Electoral Studies 23:641-59.