You must add a |reason=
parameter to this Cleanup template – replace it with {{Cleanup|May 2005|reason=<Fill reason here>}}
, or remove the Cleanup template.
Puget Sound environmental issues are diverse and complex. Declining salmon populations are frequently cited as an indication of overall environmental degradation (Montgomery 2003).
Puget Sound industry
Much of the Puget Sound’s industry relies on the waters that surround the area. Oysters, salmon, clams, herring, trout, perch and sole are regularly harvested from Puget Sound’s oceans and riverbeds (Puget Sound Action Team). Although fish farming (fish aquaculture) is uncommon in the Puget Sound, there is a wealth of commercial bivalve shellfish production in the area. Whereas fish farming is uncommon and unpopular in the Puget Sound because of its negative environmental impacts and problems with water pollution, bivalve shellfish naturally clean the water they grow in (Thanqaraju). The large bivalve shellfish industry may play a role in the relative purity of Puget Sound water quality. Some factories have accidentally released harmful chemicals into the waters of Puget Sound. Two examples of such chemicals are DDT, (dichloro-diphenyl-trichloro-ethane) and PCB (polychlorinated biphenyl). These chemicals break down very slowly, and therefore will be in the water for a long time. These chemicals exist in very low concentrations in the water, but through biomagnification, the toxin levels increase dramatically as one moves up the food chain. (Sverdrup, Duxbury)
Not only is Puget Sound important to the industries related to sea life, it is also one of the main shipping ports of the Northwest. Much of the Northwest relies on trade goods that are shipped through Puget Sound ports. The rapid development of the trade industry along Puget Sound has caused environmental problems due to the fact that so much of the shoreline is now industrialized.
Urbanization around Puget Sound
The Puget Sound region has been growing rapidly. Puget Sound will grow by 16% between 2000 and 2020 (Sound Transit-Kirkland Project). The population is increasing because people like to live around the ocean. Since 1960, the population of the central Puget Sound has more than doubled, increasing by 1.87 million people from 1,513,000 in 1960 to 3,387,500 in 2003. Puget Sound Trends. Due to the increasing population and urbanization Puget Sound is getting worse [USA Today].
Oceanographically, it is a partially mixed, estuarine fjord consisting of a series of interconnected basins separated by sills.
Ecologically, the area is very rich, although many non-profit organizations and government agencies are working to address Puget Sound environmental issues.
The Shoreline Management Act of 1971 which was created in order to help slow and reverse the damage that urbanization has upon Puget Sound. In Snohomish County there are seven basic land and water use element, all of which encourage and promote the general well being of the Puget Sound environment. However it is done in a realistic way because they take into fact that there will be growth, that cannot be stopped, so this plan has to do with how can we accommodate population growth and raise the quality of life for the Puget Sound environment.
Hood Canal Hypoxia
The Hood Canal is a long, narrow and deep fjord-like body of water. There are several factors that lead to low-oxygen conditions (hypoxia) in Hood Canal. First is the underwater topography of the Canal. The deepest parts of the Canal are more than 600 feet deep, but at the entrance is a sill that is only 150 feet deep. This sill leads to sluggish water exchange between Admiralty Inlet and Hood Canal. Water exchange from tides is also sluggish in Hood Canal due to its shape and depth. Second is the supply of nutrients, primarily nitrate, to the euphotic zone. There are both natural and man-made sources of nutrients. The primary natural source is in ocean water that flushes Hood Canal. Man-made sources include leaking septic systems, storm water runoff, agriculture and various other sources. The presence of nutrients leads to algae growth, which consumes oxygen when the algae die and decompose, contributing to the low oxygen conditions in these waters. Third is the source of ocean water that enters Hood Canal. Circulation in Hood Canal is like most estuaries: fresh, warm water flow out at the surface and is replaced by cold, salty water at depth. The cold, salty ocean water that enters Hood Canal comes into Puget Sound from the open ocean and has not recently been in contact with the atmosphere. As a result, this water is initially somewhat depleted in oxygen. Low oxygen conditions are at there worst in the late summer, after several months of limited flushing and maximum plankton production near the surface. In some years, oxygen becomes sufficiently depleted that animals cannot survive. These kills may occur either locally or over a wide area. These issues are part of a current research program (Hood Canal Dissolved Oxygen Program).
Eelgrass
Eelgrass is such an exceedingly vital facet of the Puget Sound that many call its beds a “multimillion dollar industry in Washington..." These beds provide nutrients and shelter for various animals in the Sound, the most important being the salmon population. The grass provides protective cover for juvenile salmon who will hide among its leaves to avoid predators. Eelgrass also acts as a nursery for herring who deposit their eggs among the grass. These herring will go on to be an important food source to both juvenile and adult salmon. Additionally, during low tide, eelgrass shelters many small animals from extreme temperatures, and in tideflats the beds act as a sponge for moisture offering additional protection for marine animals.
Eelgrass is an underwater grass that thrives in marine and estuarine water bottoms and spreads through rhizomes, or roots. It has been estimated by The State Department of Natural Resources that Puget Sound is occupied by approximately 26,000 acres (105 km²) of eelgrass. These beds tend to grow in two different Puget Sound habitats, one being flats which can be described as either large shallow bays or small ‘pocket’ beaches, and also in fringe beds along steep shorelines.
Although this grass is such a vital part of the Puget Sound ecosystem, Washington State has lost nearly 33% of its eelgrass beds due to various factors including dredging, which not only removes the grass but inflicts nearly irreversible damage to the Puget Sound ecosystem and marine chemistry. Furthermore, dock construction is detrimental to eelgrass beds as the docks shelter the grass from direct sunlight, a necessity for eelgrass growth. Other factors of eelgrass loss include pollution and logging.
The evolution of Pacific salmon
It is difficult to become familiar with the evolution of salmon because there are minimal amounts of salmon fossils, if any at all. Since the salmon swim in mountain rivers, the mountains erode, thus destroying any fossils of salmon (Montgomery, King of Fish). Historically, people have believed that the salmon, "rode out on the glacier advances" and gradually spread once the ice melted (Montgomery, King of Fish). However, fossils of the modern species of salmon predate the glaciations which means that the salmon came before the glaciers and therefore could not have relied on glaciations for evolution (Thomas et al., 1986 ). DNA sequencing techniques are now being used to identify salmon populations by looking at genetic mutations, “to estimate when populations diverged” (Montgomery, King of Fish). By doing this, researchers have found that the Atlantic and Pacific salmon diverged about twenty million years ago as the, “freezing of the polar seas below the tolerance of salmon imposed a barrier that prevented the commingling of salmon stocks in different oceans” (Montgomery, King of Fish). Pacific salmon started to form clans approximately ten million years ago, and four million years later, there were five additional species of Pacific salmon.
Degradation of salmon habitat in the Puget Sound
Development and expansion in the Puget Sound region have resulted in the degradation of salmon habitat. Numerous aspects contribute to this loss of salmon habitat. Loss of river habitat through diking, damming, and redirection of rivers have reduced the areas where salmon are able to spawn (Montgomery 2003). Significant log jams in rivers allow salmon special areas to rest during spawning season (Montgomery 2003). Healthy forests and beaches are dwindling in the Puget Sound, affecting the salmon population. Salmon need healthy, cold water to return to spawning areas (City of Seattle). According to the "State of the Sound" report, 30% of Washington State's waterways are contaminated by stormwater runoff. (Puget Sound Action Team 2004). The contaminated rivers, streams and bays, as well as the Puget Sound, are key areas needed for salmon habitat. According to the "State of the Sound" the number of forage fish, an important food source for salmon, is declining. Degradtion of salmon habitat not only affects the salmon, but also other fisheries and the ecosystem.
The needs of salmon for survival
In order for salmon to revive in the Puget Sound, their basic needs must be met. According to David Montgomery (King of Fish, 2003), these needs include cool, unpolluted water. Puget Sound has not met this need, because 17 stocks of salmon and steelhead have been listed as endangered due to polluted waterways, as well as other factors People for Puget Sound. Other basic salmon needs include clean gravel streambeds to lay their eggs, a flood regime in tune with their life cycle, accessible habitat that provides food and cover from predators Good streambeds, another necessity, are few due to damming and urbanization. Lastly, juvenile and adult salmon need to be able to get back home to their orignal rivers and spawning beds. Due to dams and overfishing the salmon have not been able to do that, and thus have had a major decrease in populatin. Until the government takes strict action in meeting and enforcing these needs, the salmon population will continue to decline, possibly to extinction.
Logjams in Puget Sound rivers and streams provide important wintering habitat for juvenile salmon. Logjams protect the salmon from predators and tumultuous waters. In 1880 the US Army Corps of Engineers began a process of "desnagging" Northwest rivers, one of the first actions by settlers harmful to salmon populations (Montgomery 2003). There is currently a movement among environmentalists to create engineered logjams (ELJs) to restore salmon habitat in the Puget Sound area.
While implementing these actions to ensure that the basic needs for salmon are met seems too granidous, we need to always keep in mind what it is that we are working for. It's not a charity in another land, it is the fundamental icon of our residency. "Besides humans, no other creature penetrates the Northwest so completely. The salmon is to the entire Northwest what the spotted owl was to old-growth forests--a telling indicator of ecological health" (Mindy Cameron, The Seattle Times, Aug. 18, 2002, p.D1). The abundunce of salmon is something we can see, touch, and even taste, and that is why we can take so much pride in recovering their speicies. It's a big task to be fulfilled, but our duty to our icon and the pride that we all carry in the Puget Sound that will make it so worthwhile.
The need for salmon & steelhead hatchery reform
More than 100 hatcheries are operated in Puget Sound and coastal Washington by the Washington State Department of Fish and Wildlife (WDFW), Puget Sound and coastal Indian Tribes, and the U.S. Fish and Wildlife Service (USFWS). Most were built to produce fish for harvest in response to declines in naturally spawning salmon populations.
Hatcheries now provide 70 percent of the salmon caught in Puget Sound and are the linchpin of an $854 million annual recreational fishing economy in Washington State (ranked eighth in the nation). Hatcheries also play an important role in meeting Tribal treaty harvest obligations. As better scientific information has become available, however, hatcheries have been identified as one of the factors responsible for the decline of naturally spawning populations.
State, Tribal, and federal managers of Washington's salmon and steelhead must ensure their hatcheries do not present a risk to several Puget Sound and coastal stocks that are listed or proposed for listing as threatened under the federal Endangered Species Act (ESA). But the managers are seeking to go beyond merely complying with ESA directives, to create a hatchery system that helps both to recover and conserve wild populations, as well as to support sustainable fisheries.
Within this context, the Hatchery Reform Project was developed as a cooperative effort to allow science to direct the process of ensuring that today's hatchery system matches today's circumstances and goals.
Salmon
The Puget Sound estuary is home to many marine creatures including Orca whales, seals and Pacific salmon. Pacific salmon are an iconic species of the Puget Sound Region and spawn in most major tributaries that feed the sound. King or Chinook salmon are one of the many species of salmon in the Puget Sound, as well as Coho, Chum and Sockeye salmon (Montgomery, 136).
The declining salmon population in Puget Sound is "a telling indicator of the ecological health" of the area and "billions of dollars have been spent to reverse the declining salmon runs" (Cameron 2002:D1). The declining salmon population in the Puget Sound can be attributed to several factors. Many of these factors include, however are not limited to: habitat, hydropower, overharvesting, hatcheries, and "the Fifth H" history. Salmon have ecological requirements such as logjams, wood and gravel in the rivers, high oxygen content, correct ocean and fresh water temperature, and proper sunlight. History has the power to greatly impact the rise and/or fall of the salmon population in the Puget Sound. "Humans have conducted at least three full-scale experiments on how well salmon adapt to a changing landscape. Salmon failed each time, first in Great Britain, then in New England, and now in the Pacific Northwest" (Montgomery 2003:3).
Pacific Salmon have disappeared from 40 percent of their historic range outside Alaska. For every 50 salmon the Columbia River basin supported 150 years ago, today it is estimated to support seven. The state of Washington continually tried to place the blame for this decline on Native American fishing, even as commercial fisheries took more than a sustainable amount of fish each year. State courts continually curtailed Native American fishing rights by limiting the sites and times of year that they could fish (Montgomery, 2003). When brought to the federal courts, however, these cases have been repeatedly overturned, as in the landmark Boldt Decision of 1974. In this decision, Judge Boldt went all the way back to the original treaties made with numerous tribes in the 1850’s to determine what rights the Native Americans had regarding fishing. The treaties all stated that the tribes had the right to fish at “all usual and accustomed places" and that this right was "secured to said Indians in common with all citizens of the territory” (Document: Boldt Decision). Judge Boldt interpreted the phrase “in common” to mean that the Native Americans and other citizens were each entitled to half of the fish harvest. This was a groundbreaking decision whose repercussions are still being felt today, especially by fishermen who complain that the Native Americans take nowhere near the half allotted to them.
There has been a struggle on salmon returning to their Pacific Northwest rivers and streams because of the struggling northwests economy. This provides a much-needed economic influx from increased recreational and commercial of salmon fishing. Three percent of wild salmon runs in the Columbia Basin are below historic numbers. Recent studies also show that the oceans temperature may be warming again and that the northwest is suffering it's sixth straight year of below-average waters. Save Wild Salmon
Under provisions of the federal Endangered Species act, numerous salmon populations throughout the Pacific Northwest have been listed as endangered (Cameron 2002: D1). One of the factors that contribute to declining salmon runs in Puget Sound and the Pacific Northwest in general, is the lack of logjams in rivers. As stated above, logjams are essential to the survival of healthy salmon populations. Logjam and river current interaction carve deep pools into riverbeds, providing salmon and their young, also known as fry, with hiding places from predators. Logjams also force some of the water from the main river to spill out over the adjacent floodplain, forming tributaries along the river which supply ideal habitat for maturing salmon. The natural processes of spawning and reaching maturity become much more difficult for salmon without the services logjams provide (Montgomery 2003).
Another reason for salmon population decline is the use of increasingly sophisticated fishing technology. Some of the first Native American fishermen depended only on canoes, nets made from nettle or cedar fiber, and their personal skill to catch fish (Pacific Coast 2005). Today’s fishermen use trackers to locate the fish they want to catch, whether salmon or otherwise, and then use technology like powerboats, winches, and nets made of almost unbreakable substances to catch the desired species. Advances in technology have their disadvantages, however. Advances in fishing technology have enabled fishermen to catch more and more fish of all sizes and species. For an extended period of time now, fishermen have been catching not only the larger, mature fish, but also the smaller, immature fish that have not had the chance to reproduce. This practice is detrimental to salmon populations because it does not leave any fish to propagate the salmon species.
In addition to technological advancements in fishing, invasive species and natural predators threaten the remaining salmon population. These include, but are not limited to, harbor seals, sea lions, killer whales and various sea birds. While these species are natural predators of salmon, juvenile salmon also have competition to deal with when gathering food. One major source of competition are jelly fish who feed on the same organisms as juvenile salmon. The proliferation of jelly fish and decrease of salmon could potentially lead to the "infestation" of jelly fish in local waters. Shifting Baselines Also, as the organisms which salmon feed on begin to dwindle due to factors including overfishing and invasive species, salmon are further threatened as their food sources become precarious, as is the case with herring populations around Puget Sound (Puget Sound Action Team).
Habitat
The Puget Sound boasts an impressive habitat for Salmon, as well as other flora and fauna necessary for the species’ survival. Healthy eelgrass and kelp beds foster juvenile salmon as they make the change from small rivers and streams to a new ocean habitat in the Puget Sound before they travel onto the Pacific Ocean. Prey for salmon at different stages of their lives also thrives in healthy Puget Sound habitat including sand lances and rockfish (Klinger, 2005). As it applies to habitat, the human population along the Puget Sound shoreline has made these pristine environments harder and harder to come by. Shorelines have been bulk-headed and armored, estuaries have been filled to make agricultural land and naturally occurring log jams have been removed to make navigation in the Sound easier (Montgomery, 2003). Habitat degradation is cited by the Washington Department of Fish and Wildlife as one of the major contributors in reducing the Salmon stock’s resilience (Washington Department of Fish and Wildlife, 2001). An additional loss to salmon habitat along the Puget Sound has been that of salt marsh habitats along shorelines. These habitats provide salmon with important grounds for shelter as well as food. Nearly all salt marshes in and around the major urban areas around the sound have been destroyed - in fact there has been a 73% loss of salt marsh habitat in and around the Puget Sound altogether over the last 125 years. Washignton State Dept. of Ecology
Hydroelectric Dams
Hydroelectric dams contributed to the decrease in salmon populations as well. They prevent adult salmon from entering upstream to spawn. The fluctuation in water flow put tremendous amounts of stress on salmon and reduces their ability to survive (Montgomery 2003). Some dams have fish ladders that allow salmon to pass through the dam. This system does help salmon to reach their spawning sites, however, the juveniles often get killed on the way downstream by the turbines in the dam. There are huge controversies about whether to actually stop the dams or to let it run. Discontinuing the dams would not provide enough energy fro us, since about 55% of our energy is from hydroelectric dams. On the other hand, environmentalists are in favor of stopping hydroelectric dam operations. Columbia River Basin
Dams affect almost all the major rivers in the Pacific Northwest region, particularly near the Puget Sound. Two important river systems for salmon affected by hyrdroelectric dams are the Columbia and Snake Rivers for instance. As mentioned before dams impede the natural lifecycle of salmon by creating phyiscal barriers to their spawning grounds with detrimental consequences. Reduced water velocity from these barriers significantly increases the time needed for young salmon to travel down the river to start the ocean phase of their lifecycle. This augmentation in migration time for salmon and alteration in "timing" possibly leads to disorientation and an increased susceptibility to predation. Foundation for Water and Energy Education Another adverse effect known as "supersaturation" can occur as well for fish encountering dams that is similar in nature to the "bends" that can kill humans. Dams also play a major role in "taming" once "wild" rivers, the latter much more beneficial to sustaining wild salmon populations, thus negatively altering the natural environmental dynamics of ecosystems suitable for salmon. (Montgomery 2003, p. 239).
Over Fishing
Over fishing is another major factor in the depletion of salmon. Salmon became popular because it was considered very cheap compared to the growing costs of meat. As fishing became more and more popular so did canneries. In 1877 the first Puget Sound cannery was built in Mukilteo and by 1900 Puget Sound had expanded it’s operating canneries to 19. The effectiveness of the cannery fish traps were so great that biologists began to argue that a guaranteed number of fishes needed to be allowed to escape the nets to reach their spawning grounds in order to prevent the total extermination of salmon (Montgomery 137). The production of canned salmon grew slowly until about 1890 when it really started to pick up rapidly. As the great World Wars of the 1900’s started to take place canneries started to decline progressively. This was mainly due to voters supporting salmon protection initiatives because of their traps were banned in the state of Washington as voters passed Initiative 77. However because of this Oregon fishing boats began increasing their catch since Washington banned their traps. Through this there was no increase in the number of salmon reaching their spawning grounds 18 years after the initiative passed. The ban in Washington eventually led to technological advances in salmon fishing. Vessels for open-ocean salmon fishing started developing in the 1930’s through advances in marine technology. This allowed huge floating canneries to harvest and package salmon in the open ocean far from where runs were originally from. Thus, through the development of marine technology countries with no salmon or depleted runs could harvest fish in other country’s open water which in turn began to mess with salmon conservation and recovery efforts (Montgomery 139). Now, Alaska currently hosts most of the American salmon fisheries because they are able to maintain relatively healthy habitats and salmon runs (Montgomery 143).
Invasive Species
Aquatic nuisance species are non-native plants or animals that threaten the diversity or abundance of native species, the ecological stability of infested waters, or the commercial, agricultural or recreational activities that depend on such waters (Chapter 77.60 RCW). In recent years, the Puget Sound has seen an increase of invasive species, specifically from Japan. M. McGrann, D. Sloan, and A.C. Cohen in their paper called, Invasion by a Japanese marine microorganism in Western North America from the March 2000 edition of Hydrobioligia, state that a certain organism had invaded as early as 1971 in Puget Sound. In recent decades, society and how it relates to the ocean has become increasingly globalized. Invasive species have come to the Puget Sound via several factors, including aquaculture, importation of live seafood, shipping (attached to ship hulls and through ballast water), research and academic institutions, deliberate introductions, pet stores and public aquaria, and natural dispersal. Department of Natural Resources The European green crab, Carcinus maenas, and the marine grass Spartina are currently two of the most damaging species. In respone to such trends, ocean species have migrated to places they shouldn't. Marjorie Wonham and James Carlton in their article entitled, Trends In Marine Biological Invasions at Local and Regional Scales, published in 2005 in Biological Invasions declare the Puget Sound has the most introduced invasive species. Nationwide, about 400 of the 958 (42 percent) species listed as threatened or endangered under the Endangered Species Act are considered to be at risk primarily because of competition with and predation by non-indigenous species. Puget Sound Action Team
The Washington Department of Fish and Wildlife is now attempting to combat its exotic species problem with the Washington State Aquatic Nuisance Species Management Plan. Under this plan, Washington State Patrol Commercial Vehicle Inspectors search incoming vessels for harmful invasive species, such as the zebra mussel, and decontaminate the vessels before they can spread the organism. Washington Fish and Wildlife The plan also established an Aquatic Nuisance Species committee to find other ways to protect Washingtonians from the harm done by invasive species. The committee coordinates responses to threats at the federal, state, local and tribal as well as private levels, and presents a biennial report to the Governor's office to ensure that the situation is always under control.
Pollution
The population in the greater Seattle area has grown by over 18% from 1990 to 2000 (censusscope.org). This population will continue to grow and increasingly pollute Puget Sound. The strain on Puget Sound is augmented by the fact that it is still legal to discharge chemicals such as lead, PCBs, and mercury into Puget Sound waterways. These chemicals are dangerous not only to humans but to marine organisms as well, as the PCB's build up their systems. In fact, over 70 waterways in Washington State have unsafe levels of these and similar chemicals (pugetsound.org). Hydrocarbons result because of burning coal or petroleum. Many industries and steamships also use coal as a power source. In the early 1900's, pollution increased dramatically because of these hydrocarbons. By 1943, the pollution began to decline. In 1970, the level of hydrocarbons dropped to its original level of fifty years before. Puget Sound Environmental Issues In addition to the dangers posed discharging chemicals directly into Puget Sound, storm water runoff contributes significantly to the level of pollution. During rainy weather, the toxins on city streets will be swept away by the running water and will be delivered to storm drains. This toxic water is directly delivered to Puget Sound.
Oil Spills
Oil spills pose another major threat to the Puget Sound marine wildlife and ecosystems. Since 1989, there have been 225 oil spills in Puget Sound. Nearly everyday Puget Sound imports 550,000 barrels of unrefined oil each day. Thus making Puget Sound one of the countries primary centers for refining petroleum. (Puget Sound Action Team) One such spill on October 14th, 2004 in Dalco Passage leaked nearly 1,000 gallons over Vashon and Murray Island. The effects of oil spills were wide spread affecting the Maury Island Aquatic Reserve which inhabits sensitive eel grass and forage fish spawning areas which are necessary for native salmon and orca populations. (People for Puget Sound)
223 of these spills have been deemed ‘serious,’ and have released a combined 114, 405 gallons of oil in the Sound. Two of the 225 spills have been called ‘major,’ and include the Exxon Valdez spill in 1989 and another in 1999 off the coast of Bellingham, Washington. Puget Sound Online Because more than 600 vessels travel through Puget Sound every day, many believe that a disastrous oil spill is imminent. People for Puget Sound An oil spill even bigger than the Exxon Valdez incident could devastate the precious Puget Sound environment. Toxins could infiltrate every aspect of the Sound, including all marine and plant life.
Population
Times have changed since the 1970’s when a billboard in Seattle read “the last person to leave Seattle please turn out the lights” (Montgomery 2003: 8). The expansion of Microsoft and Boeing has spurred on an economic growth in the area. The 12-county Puget Sound region including Seattle and Tacoma, has quadrupled to 4 million people since the 1950’s and the state predicts 1 million more residents by 2025 (Pugetsound.org). This has major environmental implications including pollution runoff and the altering of important shorelines. “One-third of Puget Sound shoreline has already been altered” (Klinger, 2005). Population can also indirectly cause problems for fragile marine environments; for instance, the gravel mining operation at Maury Island, started in part to provide materiel for the proposed third runway at Seattle-Tacoma International Airport as well as to repair overused roads in the area, carries with it a host of aquatic environmental implications.
Coastal Development
Another factor contributing to the salmon decline in the Puget Sound region is coastal development. The concrete walls that are often used to protect coastal housing from large surf are also contributing to the destruction of coastal habitat. These concrete walls can often destroy the gravely beaches that are essential parts of salmon habitats. These walls can also affect eelgrass beds that are located just off shore. Salmon and many other fish rely heavily on eelgrass beds for food and protection. These concrete walls are known as bulk-heads, and from 1977 to 1992 in Thurston County, shoreline amoring (which includes bulkheads) doubled - right where the Deschutes River dumps into the Puget Sound. Shared Salmon Strategy. These bulkheads also alter shore drift, riding beaches of important sediments, shelter, and food for salmon. Shoreline vegitation and feeder species are also often lost due to bulkheads. Wa. State Dept. of Ecology - Salmon. There are very few remaining undeveloped coastal beaches in the Puget Sound; however one of the few remaining "pristine" undeveloped beaches those along the shores of Maury Island. These beaches are almost as close as you can get to pristine, and that is because they have been carefully zoned to protect the coastal waters. If we want to keep the remaining salmon habitat we need to conserve and protect the remaining semi-pristine coastline.
Solutions
Although Puget Sound and its inhabitants all must face difficult issues, there are many significant forces working hard to counteract the degredation of the region. In regards to salmon, the National Research Council recommended a publicly-accountable scientific advisory board to help direct conservation efforts on a larger scale (National Research Council, 1996). Many grassroots organizations, ie. People for Puget Sound, have developed into powerful centers for lobbyists and have created and enacted programs to monitor, restore or preserve the environment People for Puget Sound. In addition, the state government has expressed its concern for the region, creating groups like "Puget Sound Action Team" to restore and maintain the health of the sound. [1]. This organization, like many others currently has programs to remove fishing gear, increase salmon population and health, and improve nearshore habitat. With the support of local communities and state sponsorship, organizations are able to help provide restoration and protection regarding a wide range of issues in the region. The Washington State government has also adapted the federal government's "marine protected area" or MPA system into designated Aquatic Reserves, defined as "aquatic lands of special educational or scientific interest, or lands of special environmental importance that are threatened by degradation" (WAC 332-30-151). Like its national MPA counterpart, Aquatic Reserves are meant to serve as aquatic versions of national parks or sanctuaries. [2] Through the Aquatic Reserve Program, the Washington State Department of Natural Resources hopes to control these areas in an effort to restore, preserve, or enhance habitats and species that directly tie in to the aquatic ecosystem. The first Aquatic Reserve created under the new program was at Maury Island in November of 2004 (see also: South Maury Island environmental issues). Further candidate sites now under review include Cherry Point, Fidalgo Bay, Cypress Islands, and Orca Pass. [3]
Solutions for Puget Sound Salmon Protection
Federal involvement is also crucial to the long term survival of salmon. The majority of the decline in salmon population is attributable to the effects of population growth within the region, such as damming of Puget Sound tributaries and pollution of Puget Sound. However, some proposed solutions have little to do with directly addressing the effects of population growth. Federally sponsored actions have been proposed in defense of salmon including the poaching of seals and sea lions (which are also federally protected species) in waterways (such as the Puget Sound) where the salmon runs are depleted and the seals and sea lions are threatening the survival of the salmon (Earth Island Journal, 1998). Another commonly proposed solution is the increased implementation of salmon hatchery programs. Proponents of the plan argue that hatcheries are essential to the survival of salmon within the Puget Sound region and beyond. Other groups argue against the hatcheries because they claim that it offsets the environmental balance by introducing the artificially raised salmon populations and pitting them against the natural population. There are debates over the effectiveness of hatcheries and a summation is presented by E.L. Brannon in “The Controversy about salmon hatcheries.” (Brannon, 2004).
External Links
- Washington Department of Fish and Wildlife
- People for Puget Sound
- Census Scope
- Document: Boldt Decision
- Save Our Wild Salmon
- Shifting Baselines
- Puget Sound Action Team
- Shared Salmon Strategy for Puget Sound - Salmon and the South Sound Recovery
- Pacific Coast: Salmon Fisheries
- Department of Ecology, Washington State
- Port Townsend Marine Science Center
- Sound Waves, Coastal Science & Research News
- Hood Canal Dissolved Oxygen Program
- Engineered Logjams: Salvation for Salmon
- Long Live the Kings
- Geology, Geomorphology, and the Restoration Ecology of Salmon
- City of Seattle (Salmon)
References
- Brannon, E.L. (September 2004). “The controversy about salmon hatcheries.” FISHERIES 29 (9): 12-31.
- Cameron, Mindy. Seattle Times. 18 Aug. 2002. pg:D1
- Christie, Patrick, Assistant Professor, Society and the Oceans Lecture, The University of Washington, April 2005.
- Earth Island Journal. (Summer 1998). v13 n3 p8(1).
- Emerick, Christina M. Introduction to the oceans. Kendall/Hunt Publishing Company 1991. Page: 39
- Keith A. Sverdrup, Alyn C. Duxbury, and Alison B. Duxbury. An Introduction to the World’s Oceans. McGraw-Hill. 2003. Pages: 328, 337-339
- Klinger, Terry, Assistant Professor, University of Washington, Lecture for Society and Oceans. 2005.
- Montgomery, D.R. 2003. King of Fish The Thousand-Year Run of Salmon. Boulder: Westview Press.
- National Research Council. "Upstream: Salmon and Society in the Pacific Northwest." National Academies Press, 1996, pp. 1-38.
- Thanqaraju, Ranjini. “Lucrative Income From Organic Aquaculture.” New Straits Times [Kuala Lumpur] May 27, 2004 PG 11