利用者:Aozoramat/sandbox

これはこのページの過去の版です。Aozoramat (会話 | 投稿記録) による 2014年11月26日 (水) 09:14個人設定で未設定ならUTC)時点の版 (シュレディンガー方程式の導出)であり、現在の版とは大きく異なる場合があります。

ファイル:Geiger-Marsden apparatus photo.jpg
ガイガー=マースデンの実験装置のレプリカ

ガイガー=マースデンの実験 (ラザフォードの散乱実験とも呼ばれる) は画期的な一連の実験であり、すべての原子には、プラスにに帯電しほとんどの質量が集中している原子核があることが発見された。このことは、アルファ粒子を金属箔に当てたときの散乱の様子から分かった。実験は1908年から1913年まで、マンチェスター大学の物理学研究室でアーネスト・ラザフォードの指導の下でハンス・ガイガーアーネスト・マースデンによって行われた。 なwere a landmark series of experiments by which scientists discovered that every atom contains a nucleus where its positive charge and most of its mass is concentrated. They deduced this by observing how alpha particles are scattered when they strike a thin metal foil. The experiments were performed between 1908 and 1913 by Hans Geiger and Ernest Marsden under the direction of Ernest Rutherford at the Physical Laboratories of the University of Manchester.

要約

原子の構造についての当時の理論

プラム・プディング模型
クリスマス・プディング

ラザフォードの実験がなされた当時は、原子構造の一般的な理論はプラム・プディングモデルであった。この原子模型はウィリアム・トムソンが考案し、J.J.トムソンが発展させたものである。J.J.トムソンは、原子を構成する要素としての電子を発見した科学者であった。彼は原子は正電荷の球体であり、負電荷の電子はクリスマス・プディングのプラムのように、その全体に分散していると考えた。当時は陽子や中性子の存在は知られていなかった。しかし、原子が非常に小さいことは分かっていた(ラザフォードは10-8m のオーダーだと考えていた[1])。この時代の原子模型は古典(ニュートン)力学によるが、現在では量子力学によるモデルが使われている。

The popular theory of atomic structure at the time of Rutherford's experiment was the "plum pudding model". This model was devised by Lord Kelvin and further developed by J. J. Thomson. Thomson was the scientist who discovered the electron, and that it was a component of every atom. Thomson believed the atom was a sphere of positive charge throughout which the electrons were distributed, a bit like plums in a bowl of Christmas pudding. The existence of protons and neutrons was unknown at this time. They knew atoms were very tiny (Rutherford assumed they were in the order of 10-8 m in radius[1]). This model was based entirely on classical (Newtonian) physics; the current accepted model uses quantum mechanics.

ラザフォードの実験以前でも、トムソンの原子模型は広く受け入れられていたわけではない。トムソンにしても、自分の考えを完全で安定したモデルとしてまとめきれてはいない。日本の長岡半太郎は、互いに反発する電荷が相互に浸透するはずがないとして、トムソンの原子模型をまったく否定した.[2][3]。彼は、原子の正電荷が核をつくり、電子が土星の輪のような軌道を回る原子模型を提案した。 Thomson's model was not universally accepted even before Rutherford's experiments. Thomson himself was never able to develop a complete and stable model of his concept. A Japanese scientist named Hantaro Nagaoka rejected Thomson's model entirely on the grounds that opposing charges cannot penetrate each other He proposed instead that the positive charge of the atom is concentrated in a nucleus, with the electrons orbiting it like the rings around Saturn.

プラム・プディングモデルによる予想

アルファ粒子は、顕微鏡では見えない正電荷の粒子である。トムソンの模型では、アルファ粒子が原子と衝突すると、最大何十分の1度か曲がるだけでまっすぐ通り抜ける。原子のスケールでは「固体」であることに意味はない。アルファ粒子は原子に当たっても、ビー玉のように跳ね返ることはない。トムソンの模型では原子のつくる電場がはたらくとされるが、それは弱いのでたいした影響は受けない(アルファ粒子は非常に高速で移動する)。トムソン模型では、正電荷も負電荷も、原子の全体に拡がっている。クーロンの法則によれば、電荷が分散していれば、その表面での電場は弱くなる.[4][5]

An alpha particle is a sub-microscopic, positively-charged particle of matter. According to Thomson's model, if an alpha particle were to collide with an atom, it would just fly straight through, its path being deflected by at most a fraction of a degree. At the atomic scale, the concept of "solid matter" is meaningless, so the alpha particle would not bounce off the atom like a marble; it would be affected only by the atom's electric fields, and Thomson's model predicted that the electric fields in an atom are just too weak to affect a passing alpha particle much (alpha particles tend to move very fast). Both the negative and positive charges within the Thomson atom are spread out over the atom's entire volume. According to Coulomb's Law, the less concentrated an electric charge is, the weaker its electric field at its surface will be.[6][7]

 

例として、金の原子に対して接線方向に通過するアルファ粒子を取り上げる。この場合が電場が最も強く、アルファ粒子の偏向θが最大になる。電子はアルファ粒子よりずっと軽いので、その影響は無視でき[8] 、原子は正電荷の重い球体とみなせる。 As a worked example, consider an alpha particle passing tangentially to a gold atom, where it will experience the electric field at its strongest and thus experience the maximum deflection θ. Since the electrons are very light compared to the alpha particle, their influence can be neglected[8] and the atom can be seen as a heavy sphere of positive charge.

Qn = 金原子の正電荷 = 79 e = 1.26558×10−17 C
Qα = アルファ粒子の電荷 = e = 3.204×10−19 C
r = 金原子の半径 = 1.44×10−10 m
vα = アルファ粒子の速度 = 1.53×107 m/s
mα = アルファ粒子の質量 = 6.64×10−27 kg
k = クーロンの定数 = 8.98×109 N·m2/C2
Qn = positive charge of gold atom = 79 e = 1.26558×10−17 C
Qα = charge of alpha particle = e = 3.204×10−19 C
r = radius of a gold atom = 1.44×10−10 m
vα = velocity of alpha particle = 1.53×107 m/s
mα = mass of alpha particle = 6.64×10−27 kg
k = Lua エラー モジュール:仮リンク/link 内、90 行目: 言語コードの指定に誤りがあります = 8.98×109 N·m2/C2

古典力学では、アルファ粒子の側面方向への運動量の変化Δp は、それを力積に置き換え、力をクーロン力で表すと:

In classical physics, the alpha particle's lateral change in momentum Δp can be approximated using the impulse of force relationship and the Coulomb force expression:

 
 
 

以上はトムソン模型の原子にアルファ粒子が近接したらどうなるかの近似計算に過ぎないが、最大偏向でも1度の何十分の1かのオーダーであることは明白である。アルファ粒子が400原子の厚さの金箔を通り抜け、(ありそうにない仮定だが)揃って同じ方向に最大の偏向を受けたとしても、まだホンの少しの偏向である。 The above calculation is but an approximation of what happens when an alpha particle comes near a Thomson atom, but it is clear that the deflection at most will be in the order of a small fraction of a degree. If the alpha particle were to pass through a gold foil some 400 atoms thick and experience maximal deflection in the same direction (astronomically unlikely), it would still be a small deflection.

実験の結果

 
左: トムソンの原子模型が正しいとすると、すべてのアルファ粒子はほとんど散乱されずに箔を通り抜ける。
右: ガイガーとマースデンの観測では、一部のアルファ粒子は強い偏向を示した。

ラザフォードの指導を受けて、ガイガーとマースデンはアルファ粒子のビームを金属の薄い箔に当てて、蛍光板を使って散乱を測定する実験を繰り返した。彼らは金属箔からあらゆる方向に跳ね返るアルファ粒子を点として記録し、その結果、いくつかがアルファ粒子の線源のほうに跳ね返ることが分かった。これは不可能なはずである。トムソンの模型よればアルファ粒子は真っ直ぐに通り抜ける。明らかにこれらの粒子は、トムソンの模型が示すよりもはるかに大きな静電気力に遭遇している。つまり、原子の正電荷は、トムソンが創造したよりもずっと小さい容積に集中していることになる。[9]

At Rutherford's behest,Geiger and Marsden performed a series of experiments where they pointed a beam of alpha particles at a thin foil of metal and measured the scattering pattern by using a fluorescent screen. They spotted alpha particles bouncing off the metal foil in all directions, some right back at the source. This should have been impossible according to Thomson's model; the alpha particles should have all gone straight through. Obviously, those particles had encountered an electrostatic force far greater than Thomson's model suggested they would, which in turn implied that the atom's positive charge was concentrated in a much tinier volume than Thomson imagined.[9]

ガイガーとマースデンが金属箔にアルファ粒子を当てたとき、90°を超える偏向を示したのはほんの一部だけであった。ほとんどは、真っ直ぐに通り抜けた。これは、複数の強い正電荷の小さな球体が、大きなカラッポの空間によって隔てられていることを意味した[9] 。テニスボールを詰め込んだ大きなバッグを持って、雑木林の端に立ち、林に向かってテニスボールを目を瞑って投げるとしよう。大部分のボールは何にも当たらず飛んで行くが、いくつかは木の幹にあたりいろいろな方向に散乱される。ラザフォードが見たアルファ粒子の散乱のパターンは、これに似ている。金属箔本体の大部分はカラッポの空間なので、大部分の粒子は真っ直ぐに通り抜ける。しかし、いくつかは小さいがしっかりした障害物、すなわち原子核に「ぶち当たる」

When Geiger and Marsden shot alpha particles at their metal foils, they noticed only a tiny fraction of the alpha particles were deflected by more than 90°. Most just flew straight through the foil. This suggested that those tiny spheres of intense positive charge were separated by vast gulfs of empty space.[9] Imagine you are standing on the edge of a copse of trees with a large bag full of tennis balls. If you were to blindly throw tennis balls at the trees, you would notice that most of the balls would fly through hitting nothing, while a few would strike tree trunks and bounce off in all directions. This analogy illustrates what Rutherford saw in the scattering pattern of the alpha particles. Most particles went straight through the metal foil because its matter was mostly empty space, but a few had "struck" some small but strong obstacle: the nuclei of the atoms.

ラザフォードはトムソンの原子模型を棄て去り、その代わりにラザフォードの原子模型を提案した。彼の模型では、は大部分がカラッポの空間であり、その正の電荷は中心の極小容積に集中しており、その回りを電子が取り巻いているという原子模型(ラザフォードの原子模型)を提案した。

Rutherford saw no option but to dismiss Thomson's model of the atom, and instead propose a model where the atom consisted of mostly empty space, with all its positive charge concentrated in its center in a very tiny volume, surrounded by a cloud of electrons.

経過

背景

アーネスト・ラザフォードマンチェスター大学の物理学教授であり、放射線の研究ではすでに名声を確立していた。彼はアルファ線ベータ線ガンマ線を発見し、それらは放射性崩壊の結果であると証明していた。1906年に訪ねてきたハンス・ガイガーというドイツ人に感心し、彼の下に留めて研究の手助けをさせていた[10]アーネスト・マースデンはガイガーの下で物理学を学んでいだ学生であった。

Ernest Rutherford was a physics professor at the University of Manchester. He had already received numerous honors for his studies of radiation. He had discovered the existence of alpha rays, beta rays, and gamma rays, and had proved that these were the consequence of the disintegration of atoms. In 1906, he received a visit from a German physicist named Hans Geiger, and was so impressed that he asked Geiger to stay and help him with his research.[10] Ernest Marsden was a physics undergraduate student studying under Geiger.

アルファ粒子は小さい正電荷粒子で、ウランラジウムから自然に放出される。これは、1899年にラザフォード自身が発見した。1908年にその質量電荷比の正確な測定を試みた。このためにはまず、サンプルのラジウムから何個のアルファ粒子が出ているのかを知る必要がある(その後で全体の電荷を測り粒子数で除算する)。アルファ粒子は小さすぎて顕微鏡では見えないが、この粒子が空気中の分子をイオン化するので、空気中に電場を作ればイオンが電流となることをラザフォードは知っていた。この原理にもとづいて、ラザフォードとガイガーは電極とガラス管から構成される単純なカウンターを作った。菅を通り抜けるアルファ粒子はすべて、電気パルスとしてカウントできる。これはガイガー・カウンターの初期バージョンであった[10]

Alpha particles are tiny, positively-charged particles that are spontaneously emitted by certain substances such as uranium and radium. Rutherford himself had discovered them in 1899. In 1908 he was trying to precisely measure their charge-to-mass ratio. To do this, he first needed to know just how many alpha particles his sample of radium was giving off (after which he would measure their total charge and divide one by the other). Alpha particles are too tiny to be seen even with a microscope, but Rutherford knew that alpha particles ionize air molecules, and if the air is within an electric field, the ions will produce an electric current. On this principle, Rutherford and Geiger designed a simple counting device which consisted of two electrodes in a glass tube. Every alpha particle that passed through the tube would create a pulse of electricity that could be counted. It was an early version of the Geiger counter.[10]

ガイガーとラザフォードが作ったカウンターは、検出器中での空気分子とアルファ粒子の衝突による偏向が強すぎて信頼できないと判明した。アルファ粒子の軌跡が非常に異なるために、気体を通過するときに生成するイオンの数が同じにはならないので、示度があてにならなかった。アルファ粒子は重いのでそんなに偏向するはずがないと考えていたラザフォードは、この問題に頭を悩ませた。彼はガイガーに、いったい何がアルファ線を散乱させているのかを調べるように頼んだ。[11]

The counter that Geiger and Rutherford built proved unreliable because the alpha particles were being too strongly deflected by their collisions with the molecules of air within the detection chamber. The highly variable trajectories of the alpha particles meant that they did not all generate the same number of ions as they passed through the gas, thus producing erratic readings. This puzzled Rutherford because he had thought that alpha particles were just too heavy to be deflected so strongly. Rutherford asked Geiger to investigate just how much matter could scatter alpha rays.[11]

金属箔の厚さや材質によってアルファ粒子の散乱がどのように変化するかを観測するために、彼らの実験では金属箔にアルファ粒子を当てていた。粒子の軌跡を測定するのには、蛍光板を用いた。この板にアルファ粒子が当たると、ちっぽけな発光が起きる。ガイガーは暗い実験室で四時間ぶっ続けで。顕微鏡でこのシンチレーション[注釈 1]を数えた[12]。ラザフォードはこのような忍耐力に欠けていたので、若者に頼ったのである[13]。彼らはいろいろな金属箔を試したが、箔を薄くするには展延性のある金が最適であった[14]。ラザフォードはアルファ粒子の線源には、ウランの数百万倍も放射性がある[注釈 2]ラジウムを選んだ。 The experiments they designed involved bombarding a metal foil with alpha particles to observe how the foil scattered them in relation to their thickness and material. They used a fluorescent screen to measure the trajectories of the particles. Each impact of an alpha particle on the screen produced a tiny flash of light. Geiger worked in a darkened lab four hours on end, counting these tiny scintillations using a microscope.[15] Rutherford lacked the endurance for this work, which is why he left it to his younger colleagues.[13] For the metal foil, they tested a variety of metals, but they preferred gold because they could make the foil very thin, as gold is very ductile.[16] As a source of alpha particles, Rutherford's substance of choice was radium, a substance several million times more radioactive than uranium.

The 1908 experiment

 
ガイガーによる1908年の論文で説明された装置。せいぜい数度ぐらいまでの偏向しか測定できない。

ガイガーによる1908年の論文 『物体によるアルファ粒子の散乱について[17] では、次のような実験を記述している。 彼は2メートルに近い長いガラス管を作り、一方の端にはアルファ粒子の線源である多量の"ラジウムエマネーション" (R) を配置した。管の反対の端は、燐光板 (Z) で覆った。管の中央には0.9 mm 幅のスリットを設けた。 R からの粒子はスリットを通って、板上にあざやかな斑点を生成した。シンチレーションをカウントし拡がり具合を測定するには、顕微鏡 (M) を使った。ガイガーは管の空気を全部ポンプで抜いてアルファ粒子を妨害しないようにし、スリットの形に対応する鮮やかでクッキリした画像が板上に残るようにした。次に管に少し空気を残し、板上の斑点がもっと拡散するようにした。その後またポンプで空気を抜いて、AA のスリットにいくつかの金箔を置いた。これによって、斑点は再び拡散するようになった。この実験によって、空気によっても固体によってもアルファ粒子は間違いなく散乱することが示された。しかし、この装置では偏向の角度が小さいものしか検出できない。ラザフォードはアルファ粒子が90°を超えるような、もっと大きな角度で散乱されていないかを知りたがった。

He constructed a long glass tube, nearly two meters in length. At one end of the tube was a quantity of "radium emanation" (R) that served as a source of alpha particles. The opposite end of the tube was covered with a phosphorescent screen (Z). In the middle of the tube was a 0.9 mm-wide slit. The alpha particles from R passed through the slit and created a glowing patch of light on the screen. A microscope (M) was used to count the scintillations on the screen and measure their spread. Geiger pumped all the air out of the tube so that the alpha particles would be unobstructed, and they left a neat and tight image on the screen that corresponded to the shape of the slit. Geiger then allowed some air in the tube, and the glowing patch became more diffuse. Geiger then pumped out the air and placed some gold foil over the slit at AA. This too caused the patch of light on the screen to become more spread out. This experiment demonstrated that both air and solid matter could markedly scatter alpha particles. The apparatus, however, could only observe small angles of deflection. Rutherford wanted to know if the alpha particles were being scattered by even larger angles—perhaps larger than 90°.

The 1909 experiment

これらの実験では、放射線源 (A) から放出されたアルファ粒子が反射板 (R) で跳ね返り、鉛板 (P) の裏側の蛍光板に到達する。

1909年の論文 『アルファ粒子の拡散反射について』 でガイガーとマースデンは、アルファ粒子をまさしく90°を超えて散乱させてみた実験について述べている[18]。この実験では、小さな円錐型のガラス管 (AB) に“ラジウム・エマネーション(ラドン)”、“ラジウム A” (actual radium) 、“ラジウム C” (ビスマス-214) を入れ、開口部を雲母でシールした。これが粒子の放出源である。さらに鉛板 (P) を用意し、その下に蛍光板 (S) を置いた。管は鉛板の上方に固定し、放出されたアルファ粒子が蛍光板に直接は当たらないようにした。それにもかっかわらず、蛍光板にいくつかのシンチレーションが見られた。これは大気中の分子から跳ね返ったアルファ粒子が、鉛版を回避して当たったためである(これは真空中の実験ではない)。彼らは次に、金属箔 (R) を鉛板の側方に置いた。管を箔の方向にむけて、アルファ粒子が箔で跳ね返って鉛板の裏側ある蛍光板に当たるかどうかを見たところ、同様のシンチレーションが見られた。その数をカウントしたところ、原子量の大きい金箔などでは軽いアルミニウム箔に比べてより多くのアルファ粒子が反射されることが分かった。

In a 1909 paper, On a Diffuse Reflection of the α-Particles",[18] Geiger and Marsden described the experiment by which they proved that alpha particles can indeed be scattered by more than 90°. In their experiment, they prepared a small conical glass tube (AB) containing "radium emanation" (radon), "radium A" (actual radium), and "radium C" (bismuth-214); its open end sealed with mica. This was their alpha particle emitter. They then set up a lead plate (P), beneath which they placed a fluorescent screen (S). The tube was held above the plate, such that the alpha particles it emitted could not directly strike the screen. They noticed a few scintillations on the screen—this was because some alpha particles could circumvent the lead plate by bouncing off air molecules (the experiment was not done in a vacuum). They then placed a metal foil (R) to the side of the lead plate. They pointed the tube at the foil to see if the alpha particles would bounce off it and strike the screen on the other side of the plate, and observed the same. Counting the scintillations, they noticed that metals with higher atomic mass, such as gold, reflected more alpha particles than lighter ones such as aluminium.

ガイガーとマースデンは、反射されてくるアルファ粒子の割合を計算しようとした。しかし、この設定では管の中の(ラジウムとその崩壊物質など)放射性物質が複数あるので、放出されるアルファ粒子の飛程英語版[注釈 3]がマチマチであり、アルファ粒子の放出速度の確定は困難であった。今度は鉛板の上にラジウム C (ビスマス-214) だけを少量置いて、アルファ粒子が反射板 (R) で跳ね返って蛍光板に到達するようにした。反射板に当たった粒子のうち蛍光板に到達した粒子の割合は、ほんのちょっと(この場合は 1/8000)だけであった[18] 。 Geiger and Marsden then wanted to estimate the total number of alpha particles that were being reflected. The previous setup was unsuitable for doing this because the tube contained several radioactive substances (radium plus its decay products) and thus the alpha particles emitted had varying ranges, and because it was difficult for them to ascertain at what rate the tube was emitting alpha particles. This time, they placed a small quantity of radium C (bismuth-214) on the lead plate, which bounced off a platinum reflector (R) and onto the screen. They found that only a tiny fraction of the alpha particles that struck the reflector bounced onto the screen (in this case, 1 in 8000).[18]

The 1910 experiment

 
ガイガーの1910年の論文で記述された装置。箔の材質と厚さによる散乱への影響を正確に測定するために設計された。

1910年のガイガーの論文[19]物質によるアルファ粒子の散乱』には、粒子が通過する物質、その物質の厚さ、粒子の速度にもとづいて、アルファ粒子が偏向する確率が最大の角度(最蓋然角)を求めるための実験が記述されている。彼は空気を抜いた気密のガラス管を作った。この一方の端には“ラジウムエマネーション(ラドン-222)を入れたバルブ (B) をつけた。B 中のラドンは水銀を使って細いガラスのパイプに吸い上げられた。その端 A は雲母で栓をされている。管のもう一方の端には、蛍光の硫化亜鉛を塗った板を置いた。板上のシンチレーションを数えるための顕微鏡には、副尺(バーニヤ)つきの垂直のミリメートル目盛りが取り付けられており、ガイガーはスクリーン上の光の位置を正確に測定し、これから粒子の偏向角度を計算できた。A から放出されたアルファ粒子は、D の小円孔で絞られてビームになる。ガイガーは経路 D から E の途中に金属箔を置いて それによる光の位置の変化も観測した。また、雲母やアルミニウムのシートを A に置いて、アルファ粒子の速度を変えることもできた。

A 1910 paper[19] by Geiger, The Scattering of the α-Particles by Matter, describes an experiment by which he sought to measure how the most probable angle through which an a-particle is deflected varies with the material it passes through, the thickness of said material, and the velocity of the alpha particles. He constructed an airtight glass tube from which the air was pumped out. At one end was a bulb (B) containing "radium emanation" (radon-222). By means of mercury, the radon in B was pumped up the narrow glass pipe whose end at A was plugged with mica. At the other end of the tube was a fluorescent zinc sulfide screen (S). The microscope which he used to count the scintillations on the screen was affixed to a vertical millimeter scale with a vernier, which allowed Geiger to precisely measure where the flashes of light appeared on the screen and thus calculate the particles' angles of deflection. The alpha particles emitted from A was narrowed to a beam by a small circular hole at D. Geiger placed a metal foil in the path of the rays at D and E to observe how the zone of flashes changed. He could also vary the velocity of the alpha particles by placing extra sheets of mica or aluminium at A.

この測定から、ガイガーは次のように結論を出した。

  • 物質の厚さが増すと、偏向の最蓋然角は大きくなる
  • 偏向の最蓋然角は物質の原子量に比例する
  • アルファ粒子の速度が増すと、偏向の最蓋然角は小さくなる
  • 粒子が 90° を超えて偏向する確率は、ゼロに近いほど小さい

From the measurements he took, Geiger came to the following conclusions:

  • the most probable angle of deflection increases with the thickness of the material
  • the most probable angle of deflection is proportional to the atomic mass of the substance
  • the most probable angle of deflection decreases with the velocity of the alpha particles
  • the probability that a particle will be deflected by more than 90° is vanishingly small

This equation appears in Rutherford's 1911 paper. Because the math script is a pain, I'm leaving it here in case someone decides to use it.

n_\alpha = \frac {Qntb^2\csc^4\phi/2}{16r^2}

 1911_paper

Rutherford mathematically models the scattering pattern

Considering the results of the above experiments, Rutherford published a landmark paper in 1911 titled "The Scattering of α and β Particles by Matter and the Structure of the Atom" wherein he proposed that the atom contains at its center a volume of electric charge that is very small and intense (in fact, Rutherford treats it as a point charge in his calculations).[1] For the purpose of his mathematical calculations he assumed this central charge was positive, but he admitted he could not prove this and that he had to wait for other experiments to develop his theory.

Rutherford developed a mathematical equation that modeled how the foil should scatter the alpha particles if all the positive charge was concentrated in a single point at the center of an atom.

 

 

s = the number of alpha particles falling on unit area at an angle of deflection Φ
r = distance from point of incidence of α rays on scattering material
X = total number of particles falling on the scattering material
n = number of atoms in a unit volume of the material
t = thickness of the foil
Qn = positive charge of the atomic nucleus
Qα = positive charge of the alpha particles
m = mass of an alpha particle
v = velocity of the alpha particle

The 1913 experiment

In a 1913 paper, The Laws of Deflexion of α Particles through Large Angles,[20] Geiger and Marsden describe a series of experiments by which they sought to experimentally verify the above equation that Rutherford developed. Rutherford's equation predicted that the number of scintillations per minute s that will be observed at a given angle Φ should be proportional to:

  1. csc4Φ/2
  2. thickness of foil t
  3. magnitude of central charge Qn
  4. 1/(mv2)2

Their 1913 paper describes four experiments by which they proved each of these four relationships.

This apparatus was described in a 1913 paper by Geiger and Marsden. It was designed to accurately measure the scattering pattern of the alpha particles produced by the metal foil (F). The microscope (M) and screen (S) were affixed to a rotating cylinder and could be moved a full circle around the foil so that they could count scintillations from every angle.[20]

To test how the scattering varied with the angle of deflection (ie if s ∝ csc4Φ/2) Geiger and Marsden built an apparatus that consisted of a hollow metal cylinder mounted on a turntable. Inside the cylinder was a metal foil (F) and a radiation source containing radon (R), mounted on a detached column (T) which allowed the cylinder to rotate independently. The column was also a tube by which air was pumped out of the cylinder. A microscope (M) with its objective lens covered by a fluorescent zinc sulfide screen (S) penetrated the wall of the cylinder and pointed at the metal foil. By turning the table, the microscope could be moved a full circle around the foil, allowing Geiger to observe and count alpha particles deflected by up to 150°. Correcting for experimental error, Geiger and Marsden found that the number of alpha particles that are deflected by a given angle Φ is indeed proportional to csc4Φ/2.

This apparatus was used to measure how the alpha particle scattering pattern varied in relation to the thickness of the foil, the atomic weight of the material, and the velocity of the alpha particles. The rotating disc in the center had six holes which could be covered with foil.[20]

Geiger and Marsden then tested how the scattering varied with the thickness of the foil (ie if s ∝ t). They constructed a disc (S) with six holes drilled in it. The holes were covered with metal foil (F) of varying thickness, or none for control. This disc was then sealed in a brass ring (A) between two glass plates (B and C). The disc could be rotated by means of a rod (P) to bring each window in front of the alpha particle source (R). On the rear glass pane was a zinc sulfide screen (Z). Geiger and Marsden found that the number of scintillations that appeared on the zinc sulfide screen was indeed proportional to the thickness as long as said thickness was small.

Geiger and Marsden reused the above apparatus to measure how the scattering pattern varied with the square of the nuclear charge (ie if s ∝ Qn2). Geiger and Marsden didn't know what the positive charge of the nucleus of their metals were (they had only just discovered the nucleus existed at all), but they assumed it was proportional to the atomic weight, so they tested whether the scattering was proportional to the atomic weight squared. Geiger and Marsden covered the holes of the disc with foils of gold, tin, silver, copper, and aluminum. They measured each foil's stopping power by equating it to an equivalent thickness of air. They counted the number of scintillations per minute that each foil produced on the screen. They divided the number of scintillations per minute by the respective foil's air equivalent, then divided again by the square root of the atomic weight (Geiger and Marsden knew that for foils of equal stopping power, the number of atoms per unit area is proportional to the square root of the atomic weight). Thus, for each metal, Geiger and Marsden obtained the number of scintillations that a fixed number of atoms produce. For each metal, they then divided this number by the square of the atomic weight, and found that the ratios were more or less the same. Thus they proved that s ∝ Qn2.

Finally, Geiger and Marsden tested how the scattering varied with the velocity of the alpha particles (ie if s ∝ 1/v4). Using the same apparatus again, they slowed the alpha particles by placing extra sheets of mica in front of the alpha particle source. They found that, within the range of experimental error, that the number of scinitillations was indeed proportional to 1/v4.

Rutherford determines the nucleus is positively charged

In his 1911 paper (see above), Rutherford assumed that the central charge of the atom was positively-charged, but he acknowledged he couldn't say for sure, since either a negative or a positive charge would have fitted his scattering model.[21] The results of other experiments confirmed his hypothesis. In a 1913 paper,[22] Rutherford declared that the "nucleus" (as he now called it) was positively-charged, based on the result of experiments exploring the scattering of alpha particles in various gases.

In 1917, Rutherford and his assistant William Kay began exploring the passage of alpha particles through gases such as hydrogen and nitrogen. In an experiment where they shot a beam of alpha particles through hydrogen, the alpha particles knocked the hydrogen nuclei forwards in the direction of the beam, not backwards. In an experiment where they shot alpha particles through nitrogen, he discovered that the alpha particles knocked hydrogen nuclei (ie protons) out of the nitrogen nuclei.[21]

あとがき

強く偏向したアルファ粒子を記録したとガイガーがラザフォードに告げたとき、ラザフォードは仰天した。後日のケンブリッジ大学の講義で、ラザフォードはこう述べている。

それは人生でもっとも信じがたい出来事でした。 15インチ砲弾をティッシュペーパーに撃ち込んだら、跳ね返ってきて自分に当たったのです。いろいろ考えて、この後方散乱は1回の衝突によるものだと判断しました。計算してみると、原子の質量の大部分が小さな核に集中していないかぎり起こりえない結果だと分かったのです。そのときに原子には電荷を帯びた小さな質量中心があると考えるようになりました。
アーネスト・ラザフォード[23]

When Geiger reported to Rutherford that he had spotted alpha particles being strongly deflected, Rutherford was astounded. In a lecture Rutherford delivered at Cambridge University, he said:

It was quite the most incredible event that has ever happened to me in my life. It was almost as incredible as if you fired a 15-inch shell at a piece of tissue paper and it came back and hit you. On consideration, I realized that this scattering backward must be the result of a single collision, and when I made calculations I saw that it was impossible to get anything of that order of magnitude unless you took a system in which the greater part of the mass of the atom was concentrated in a minute nucleus. It was then that I had the idea of an atom with a minute massive centre, carrying a charge.
Ernest Rutherford[24]

すぐに称賛が押し寄せた。土星型の原子模型を提案していた長岡半太郎は、1911年に東京からのラザフォードに宛てた手紙で「貴殿のシンプルな装置でのあざやかな成果、おめでとうございます」と書いた。天文学者のアーサー・エディントンはラザフォードの発見を、その昔デモクリトスが原子を提案して以来の重要な科学的成果と呼んだ[13]。ラザフォードによる原子核の発見は、原子核物理学の幕開けを告げるものであった。

Accolades soon flooded in. Hantaro Nagaoka, who had once proposed a Saturnian model of the atom, wrote to Rutherford from Tokyo in 1911: "Congratulations on the simpleness of the apparatus you employ and the brilliant results you obtained". The astronomer Arthur Eddington called Rutherford's discovery the most important scientific achievement since Democritus proposed the atom ages earlier.[13] By his discovery of the nucleus, Rutherford began the new science of nuclear physics.

関連記事

脚注

注釈

  1. ^ シンチレーション(シンチレーション)とは - コトバンク”. 2014年11月25日閲覧。
  2. ^ ウランの放射能強度は1.24 x 104Bq/g(ベクレル/グラム)、ラジウムの放射能強度は3.7 x 1010Bq/gである。
  3. ^ 飛程(ひてい)とは - コトバンク”. 2014年11月25日閲覧。

出典

参考文献

外部リンク

シュレディンガー方程式の導出

ある波長の光のエネルギーは、

 

同じく運動量は、

 

である。ちなみに光速 c は、

 

である。

エネルギーの式は国体放射のスペクトルを研究したプランクが導きだした。運動量の式はアインシュタインが理論的に導出し、コンプトンが実験で確めた。
波長 λ はラムダ、振動数 ν はニューと読む。 プランク定数 h は、ドイツ語読みでハーという[1]h で割った定数 ħ もよく使われるが、これはエイチバーと読む。

  1. ^ エイチと読むと H (磁場)と混同しやすいからである