Telecommunication Instructional Modeling System

This is an old revision of this page, as edited by Peter303x (talk | contribs) at 09:17, 25 October 2021. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

TIMS, or Telecommunication Instructional Modeling System, is an electronic device invented by Tim Hooper and developed by Emona that is used as a telecommunications trainer in educational settings and universities.[1][2][3]

Telecommunication Instructional Modeling System
TypeTelecommunications Training Device
InventorTim Hooper
Inception1971
ManufacturerEmona
AvailableYes
Websitehttps://www.emona-tims.com/

History

TIMS was designed at the University of New South Wales by Tim Hooper in 1971. It was developed to run student experiments for electrical engineering communications courses.[4][5] Hooper’s concept was developed into the current TIMS model in the late 1980s.[6][7] In 1986, the project won a competition organized by Electronics Australia for development work using the Texas Instruments TMS320.[8][9] Emona Instruments also received an award for TIMS at the fifth Secrets of Australian ICT Innovation Competition.[9]

Methodology

 
TIMS Methodology Diagram

TIMS uses a block diagram-based interface for experiments in the classroom. It can model mathematical equations to simulate electric signals, or it can use block diagrams to simulate telecommunications systems.[4][7][10] It uses a different hardware card to represent functions for each block of the diagram.[11]

TIMS consists of a server, a chassis, and boards that can emulate the configurations of a telecommunications system.[12] It uses electronic circuits as modules to simulate the components of analog and digital communications systems.[13][14] The modules can perform different functions such as signal generation, signal processing, signal measurement, and digital signal processing.[10][13]

V References

  1. ^ Sarfaraz, Maysam (2011-05-01). "EDUCATIONAL APPLICATIONS OF PARTIAL RECONFIGURATION OF FPGAS". Thesis from University of Tennessee at Chattanooga.
  2. ^ Silva, Mário Marques da (2018-09-03). Cable and Wireless Networks: Theory and Practice. CRC Press. ISBN 978-1-4987-5154-4.
  3. ^ Conference, American Society for Engineering Education (2004). ASEE Annual Conference Proceedings. American Society for Engineering Education.
  4. ^ a b "Using Telecommunication Instructional Modelling System (TIMS) in Communications Systems Course" (PDF). American Association for Engineering Education. Paper ID #18924. 2017.
  5. ^ Hooper, T. L. (1973-08-01). "Telecommunications Systems Modeling in the Laboratory". IEEE Transactions on Education. 16 (3): 148–152. Bibcode:1973ITEdu..16..148H. doi:10.1109/TE.1973.4320828. ISSN 1557-9638.
  6. ^ "NJIT- EE495 : Introduction to Modeling with TIMS". web.njit.edu. Retrieved 2021-08-13.
  7. ^ a b Breznik, Alfred (2004-01-30). "Hands-on learning system for Wireless laboratory courses" (PDF). Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition: 9.658.1–9.658.5.
  8. ^ Wierer, Jay; Chandler, Edward (June 2011). "Analog and Digital Communications Laboratory Experiments Using Emona TIMS". 2011 ASEE Annual Conference & Exposition Proceedings: 22.203.1–22.203.12. doi:10.18260/1-2--17484. S2CID 54537460.
  9. ^ a b "Sticisce avstralskih Slovencev - Slovenian network in Australia". www.glasslovenije.com.au. Retrieved 2021-07-08.
  10. ^ a b Breznik, Alfred (2004-10-01). "TIMS-301 USER MANUAL" (PDF). Emona Instruments Pty Ltd.
  11. ^ Purani, Abhilash M. (2010-04-23). "AN EVALUATION OF LOW COST FPGA-BASED SOFTWARE DEFINED RADIOS FOR EDUCATION AND RESEARCH". A Thesis Presented for the Master of Science Degree the University of Tennessee at Chattanooga.
  12. ^ Sandoval, Jose R Santamaria (2020-04-01). "Application of the EMONA TIMS platform for the Telecomunications Engineering career at UNED Costa Rica". Engineering Education.
  13. ^ a b Khan, Muhammad Ajmal (2018-06-01). "Enhancing Students' Lab Experiences using Simulink-based Pre-Labsof Corresponding Hardware-based Labs" (PDF). Proceedings of the 2018 ASEE North Central Section Conference.
  14. ^ Sakovičs, Ričards (2019). "Digital-to-analog and Analog-to-digital Converter Operational Research". Riga Technical University Graduate Papers.