Counting sort
Il Counting sort è un algoritmo di ordinamento per valori numerici interi con complessità lineare. L'algoritmo si basa sulla conoscenza a priori dell'intervallo in cui sono compresi i valori da ordinare.
Descrizione intuitiva
L'algoritmo conta il numero di occorrenze di ciascun valore presente nell'array da ordinare, memorizzando questa informazione in un array temporaneo di dimensione pari all'intervallo di valori. Il numero di
Complessità
O(n+m), dove n è la lunghezza dell'array e m è pari a max(A)-min(A)+1 (max(A) e min(A) sono rispettivamenti l'elemento più grande e l'elemento più piccolo dell'array) ovvero è il range dei valori contenuti nell'array. Non è basato su confronti e scambi e conviene utilizzarlo quando il valore di m è piccolo rispetto a n, altrimenti risulterebbero più veloci altri algoritmi.
L'algoritmo è semplice ed intuitivo: si calcolano i valori max(A) e min (A) e si prepara un array C di dimensione pari all'intervallo dei valori con C[i] che rappresenta la frequenza dell'elemento i+min(A) nell'array di partenza A. Si visita l'array A aumentando l'elemento di C corrispondente. Dopo si visita l'array C in ordine e si scrivono su A, C[i] copie del valore i+min(A).
Pseudocodice
countingSort(A[]) //Cacolo degli elementi max e min max ← A[0] min ← A[0] for i ← 1 to length[A] do if (A[i] > max) then max ← A[i] else if(A[i] < min) then min ← A[i] //Costruzione dell'array C * crea un array C di dimensione max - min + 1 for i ← 0 to length[C] do C[i] ← 0 //inizializza a zero gli elementi di C for i ← 0 to length[A] do C[A[i] - min] = C[A[i] - min] + 1 //aumenta il numero di volte che si è incontrato il valore //Ordinamento in base al contenuto dell'array delle frequenze C k ← 0 //indice per l'array A for i ← 0 to length[C] do while C[i] > 0 do //scrive C[i] volte il valore (i + min) nell'array A A[k] ← i + min k ← k + 1 C[i] ← C[i] - 1
Bibliografia
- Thomas Cormen, Charles E. Leiserson, Ronald Rivest, Sorting in Linear Time, in Introduction to Algorithms, 20ª ed., Cambridge, Massachussetts, The MIT Press, 1998.
Altri progetti
- Wikibooks contiene implementazioni di Counting sort