DISCLAIMER
Questa è una sottopagina personale dove lavoro alla stesura di nuove voci o alla modifica di voci già esistenti.
Gentilmente, non modificate niente, a meno di espressa autorizzazione del sottoscritto.




tmp

La varianza cosmica è l'incertezza statistica inerente le osservazioni dell'universo a distanze estreme. Essa si basa sull'idea che è possibile osservare solo una parte dell'universo in un determinato istante, quindi è difficile fare rilevazioni statistiche sulla cosmologia sulla scala dell'intero universo[1] [2], in quanto il numero di osservazioni (piano di campionamento), può essere troppo piccolo.

Background

Il modello standard del Big Bang è di solito integrato con l'inflazione cosmica. Nei modelli inflazionistici, l'osservatore vede solo una piccola frazione di tutto l'universo, molto meno di un miliardesimo (1/109) del volume dell'universo. Quindi l'universo osservabile (l'orizzonte delle particelle cosiddette dell'universo) è il risultato di processi che seguono alcune leggi fisiche generali, tra cui la meccanica quantistica e relatività generale. Alcuni di questi processi sono casuali: ad esempio, la distribuzione delle galassie in tutto l'universo può essere descritto solo statisticamente e non possono essere derivate da principi primi.


The standard big bang model is usually supplemented with cosmic inflation. In inflationary models, the observer only sees a tiny fraction of the whole universe, much less than a billionth (1/109) of the volume of the universe postulated in inflation. So the observable universe (the so-called particle horizon of the universe) is the result of processes that follow some general physical laws, including quantum mechanics and general relativity. Some of these processes are random: for example, the distribution of galaxies throughout the universe can only be described statistically and cannot be derived from first principles.

Philosophical issues

This raises philosophical problems: suppose that random physical processes happen on length scales both smaller than and bigger than the horizon. A physical process (such as an amplitude of a primordial perturbation in density) that happens on the horizon scale only gives us one observable realization. A physical process on a larger scale gives us zero observable realizations. A physical process on a slightly smaller scale gives us a small number of realizations.

In the case of only one realization it is difficult to draw statistical conclusions about its significance. For example, if the underlying model of a physical process implies that the observed property should occur only 1% of the time, does that really mean that the model is excluded? Consider the physical model of the citizenship of human beings in the early 21st century, where about 30% are Indian and Chinese citizens, about 5% are American citizens, about 1% are French citizens, and so on. For an observer who has only one observation - of his/her own citizenship- and who happens to be French and cannot make any external observations, the model can be rejected at the 99% significance level. Yet the external observers with more information unavailable to the first observer, know that the model is correct.

In other words, even if the bit of the universe observed is the result of a statistical process, the observer can only view one realization of that process, so our observation is statistically insignificant for saying much about the model, unless the observer is careful to include the variance. This variance is called the cosmic variance and is separate from other sources of experimental error: a very accurate measurement of only one value drawn from a distribution still leaves considerable uncertainty about the underlying model. Variance is normally plotted separately from other sources of uncertainty. Because it is necessarily a large fraction of the signal, workers must be very careful in interpreting the statistical significance of measurements on scales close to the horizon.

In physical cosmology, the common way of dealing with this on the horizon scale and on slightly sub-horizon scales (where the number of occurrences is greater than one but still quite small), is to explicitly include the variance of very small statistical samples (Poisson distribution) when calculating uncertainties.[3] This is important in describing the low multipoles of the cosmic microwave background and has been the source of much controversy in the cosmology community since the COBE and WMAP measurements.

Similar problems

A similar problem is faced by evolutionary biologists. Just as cosmologists have a sample size of one universe, biologists have a sample size of one fossil record. The problem is closely related to the anthropic principle.

Another problem of limited sample sizes in astronomy, here practical rather than essential, is in the Titius–Bode law on spacing of satellites in an orbital system. Originally observed for the solar system, the difficulty in observing other solar systems has limited data to test this.

References

  1. ^ (EN) Rachel S. Somerville, Kyoungsoo Lee, Henry C. Ferguson, Jonathan P. Gardner, Leonidas A. Moustakas, Mauro Giavalisco, Cosmic Variance in the Great Observatories Origins Deep Survey, in The Astrophysical Journal Letters, vol. 600, n. 2, 2004, pp. L171–L174, DOI:10.1086/378628. URL consultato il 10-11-2010.
  2. ^ (EN) M.S. Keremedjiev (Cornell University), E.C. MacDonald, A. Dey, B.T. Jannuzi (NOAO), Quantifying the Effects of Cosmic Variance Using the NOAO Deep-Wide Field Survey, su aas.org, American Astronomical Society, gennaio 2006. URL consultato il 10-11-2010.
  3. ^ Portsmouth, Jamie, Analysis of the Kamionkowski-Loeb method of reducing cosmic variance with CMB polarization, su adsabs.harvard.edu, Department of Astrophysics, Oxford / Smithsonian/NASA Astronomy Abstract Service, 2004. URL consultato il September 18, 2007.

Sources

  • Stephen Hawking (2003). Cosmology from the Top Down. Proceedings of the Davis Meeting on Cosmic Inflation.