Pollard's rho algorithm for logarithms is an algorithm for solving the discrete logarithm problem analogous to Pollard's rho algorithm for solving the Integer factorization problem.
The algorithm computes such that , where belongs to the group generated by . The algorithm computes integers , , , and such that . Assuming, for simplicity, that the underlying group is cyclic of order , we can calculate .
To find the needed , , , and the algorithm uses Floyd's cycle-finding algorithm to find a cycle in the sequence , where the function is assumed to be random-looking and thus is likely to enter into a loop after approximately steps. One way to define such a function is to use the following rules: Divide into three subsets (not necessarily subgroups) of approximately equal size: , , and . If is in then double both and ; if then increment , if then increment .
Algorithm
Let be a cyclic group of prime order , and given , and a partition be a map
and define maps and by
- Inputs a a generator of G, b an element of G
- Output An integer x such that ax = b, or failure
- Initialise a0 ← 0
- b0 ← 0
- x0 ← 1 ∈ G
- i ← 1
- xi ← f(xi-1), ai ← g(xi-1,ai-1), bi ← h(xi-1,bi-1)
- x2i ← f(f(x2i-2)), a2i ← g(f(x2i-2),g(x2i-2,a2i-2)), b2i ← h(f(x2i-2),h(x2i-2,b2i-2))
- If xi = x2i then
- r ← bi - b2i
- If r = 0 return failure
- x ← r-1(a2i - ai) mod p
- return x
- If xi ≠ x2i then i ← i+1, and go to step 2.
- Initialise a0 ← 0
Example
Consider, for example, the group generated by 2 modulo (the order of the group is ). The algorithm is implemented by the following C++ program:
#include <stdio.h> const int n = 509, N = 2*n + 1; // N = 1019 -- prime const int alpha = 2; // generator const int beta = 5; // 2^{10} = 1024 = 5 (N) void new_xab(int& x, int& a, int& b){ switch(x%3){ case 0: x = x*x % N; a = a*2 % n; b = b*2 % n; break; case 1: x = x*alpha % N; a = a+1 % n; break; case 2: x = x*beta % N; b = b+1 % n; break; } } int main(){ int x=1, a=0, b=0; int X=x, A=a, B=b; for(int i = 1; i < n; ++i){ new_xab(x, a, b); new_xab(X, A, B); new_xab(X, A, B); printf("%3d %4d %3d %3d %4d %3d %3d\n", i, x, a, b, X, A, B); if(x == X) break; } return 0; }
The results are as follows (edited):
i x a b X A B ------------------------------ 1 2 1 0 10 1 1 2 10 1 1 100 2 2 3 20 2 1 1000 3 3 4 100 2 2 425 8 6 5 200 3 2 436 16 14 6 1000 3 3 284 17 15 7 981 4 3 986 17 17 8 425 8 6 194 17 19 .............................. 48 224 171 376 86 299 412 49 101 171 377 860 300 413 50 505 171 378 101 300 415 51 1010 172 378 1010 301 416
That is and so , as expected.
References
- J. Pollard, Monte Carlo methods for index computation mod p, Mathematics of Computation, Volume 32, 1978.
- Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone, Handbook of Applied Cryptography, Chapter 3, 2001.