Filesystem-level encryption

This is an old revision of this page, as edited by 125.19.212.165 (talk) at 19:18, 9 October 2012. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Filesystem-level encryption, often called file or folder encryption, is a form of disk encryption where individual files or directories are encrypted by the file system itself. This is in contrast to full disk encryption where the entire partition or disk, in which the file system resides, is encrypted.

The advantages of filesystem-level encryption include:

General-purpose file systems with encryption

Unlike cryptographic file systems or'--125.19.212.165 (talk) 19:18, 9 October 2012 (UTC)Bold text full disk encryption, general-purpose file systems that include filesystem-level encryption do not typically encrypt file system metadata, such as the directory structure, file names, sizes or modification timestamps. This can be problematic if the metadata itself needs to be kept confidential. In other words, if files are stored with identifying file names, anyone who has access to the physical disk can know which documents are stored on the disk, although not the contents of the documents.

One exception to this is the encryption support being added to the ZFS filesystem. Filesystem metadata such as filenames, ownership, ACLs, extended attributes are all stored encrypted on disk. The ZFS metadata about the storage pool is still stored in the clear so it is possible to determine how many filesystems (datasets) are available in the pool and even which ones are encrypted but not what the content of the stored files or directories are.

Cryptographic file systems

Cryptographic file systems are specialized (not general-purpose) file systems that are specifically designed with encryption and security in mind. They usually encrypt all the data they contain – including metadata. Instead of implementing an on-disk format and their own block allocation, these file systems are often layered on top of existing file systems e.g. residing in a directory on a host file system. Many such file systems also offer advanced features, such as deniable encryption, cryptographically secure read-only file system permissions and different views of the directory structure depending on the key or user.

See also