In mathematics, the kth compound matrix
,
[1]
of an
matrix A is the
matrix formed from the determinants of all
submatrices of A, i.e., all
minors,
arranged with the submatrix index sets in lexicographic order.
![{\displaystyle {\begin{aligned}C_{1}(A)&=A\\[6pt]C_{n}(A)&=\det(A){\text{ if }}A{\text{ is }}n\times n\\[6pt]C_{k}(AB)&=C_{k}(A)C_{k}(B)\\[6pt]C_{k}(aX)&=a^{k}C_{k}(X)\\[6pt]{\text{For }}n\times n{\text{ identity }}I,C_{k}(I)&=I\,,{\text{ the }}\textstyle {{\binom {n}{k}}\times {\binom {n}{k}}}{\text{ identity }}\\[6pt]C_{k}(A^{T})&=C_{k}(A)^{T}\,,{\text{ over any field}}\\[6pt]C_{k}(A^{*})&=C_{k}(A)^{*}\,,{\text{ over }}\mathbb {C} \\[6pt]C_{k}(A^{-1})&=C_{k}(A)^{-1}\,,{\text{ for }}n\times n,{\text{ invertible }}A\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b510d369e73cfa43884af757ad49e65a1fdcce5b)
See also
References
- ^ R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge University Press, 1990, pp. 19-20