This is a list of theorems from the books on linear algebra I'm studying. I'm putting them here because of Wikipedia's handy png-rendering capabilities. In time, this may be incorporated into an article somewhere.
Vectors
Basic operations
For any vectors
u
,
v
,
w
∈
R
n
{\displaystyle u,v,w\in \mathbb {R} ^{n}}
and any scalars
m
,
n
∈
R
{\displaystyle m,n\in \mathbb {R} }
, the following properties hold:
(
u
+
v
)
+
w
=
u
+
(
v
+
w
)
{\displaystyle (u+v)+w=u+(v+w)}
(associativity)
(
u
+
0
)
=
u
{\displaystyle (u+0)=u}
(additive identity)
u
+
(
−
u
)
=
0
{\displaystyle u+(-u)=0}
(additive inverse)
(
u
+
v
)
=
(
v
+
u
)
{\displaystyle (u+v)=(v+u)}
(commutativity)
k
(
u
+
v
)
=
k
u
+
k
v
{\displaystyle k(u+v)=ku+kv}
===
D
o
t
p
r
o
d
u
c
t
===
A
l
s
o
c
a
l
l
e
d
i
n
n
e
r
p
r
o
d
u
c
t
.
S
h
o
u
l
d
t
h
i
s
q
u
a
n
t
i
t
y
e
q
u
a
l
z
e
r
o
,
t
h
e
v
e
c
t
o
r
s
i
n
q
u
e
t
i
o
n
a
r
e
o
r
t
h
o
g
o
n
a
l
(
p
e
r
p
e
n
d
i
c
u
l
a
r
)
.
G
i
v
e
n
<
m
a
t
h
>
u
=
(
a
1
,
a
2
,
⋯
,
a
n
)
=
[
a
1
a
2
⋮
a
n
]
{\displaystyle ===Dotproduct===Alsocalledinnerproduct.Shouldthisquantityequalzero,thevectorsinquetionareorthogonal(perpendicular).Given<math>\mathbf {u} =(a_{1},a_{2},\cdots ,a_{n})={\begin{bmatrix}a_{1}\\a_{2}\\\vdots \\a_{n}\end{bmatrix}}}
and
v
=
(
b
1
,
b
2
,
⋯
,
b
n
)
=
[
b
1
b
2
⋮
b
n
]
{\displaystyle \mathbf {v} =(b_{1},b_{2},\cdots ,b_{n})={\begin{bmatrix}b_{1}\\b_{2}\\\vdots \\b_{n}\end{bmatrix}}}
we have
u
⋅
v
=
a
1
b
1
+
a
2
b
2
+
⋯
+
a
n
b
n
{\displaystyle \mathbf {u} \cdot \mathbf {v} =a_{1}b_{1}+a_{2}b_{2}+\cdots +a_{n}b_{n}}
Norm
Also called length. A vector with norm 1 is called a unit vector.
Given
u
=
(
a
1
,
a
2
,
⋯
,
a
n
)
=
[
a
1
a
2
⋮
a
n
]
{\displaystyle \mathbf {u} =(a_{1},a_{2},\cdots ,a_{n})={\begin{bmatrix}a_{1}\\a_{2}\\\vdots \\a_{n}\end{bmatrix}}}
we have
‖
u
‖
=
u
⋅
u
=
a
1
2
+
a
2
2
+
⋯
+
a
n
2
{\displaystyle {\begin{Vmatrix}\mathbf {u} \end{Vmatrix}}={\sqrt {\mathbf {u} \cdot \mathbf {u} }}={\sqrt {a_{1}^{2}+a_{2}^{2}+\cdots +a_{n}^{2}}}}
Normalizing
Generates a unique unit vector in the same direction as a given vector.
Given
u
=
(
a
1
,
a
2
,
⋯
,
a
n
)
=
[
a
1
a
2
⋮
a
n
]
{\displaystyle \mathbf {u} =(a_{1},a_{2},\cdots ,a_{n})={\begin{bmatrix}a_{1}\\a_{2}\\\vdots \\a_{n}\end{bmatrix}}}
we have
u
^
=
1
‖
u
‖
u
=
u
‖
u
‖
{\displaystyle {\hat {\mathbf {u} }}={1 \over {\begin{Vmatrix}u\end{Vmatrix}}}\mathbf {u} ={\mathbf {u} \over {\begin{Vmatrix}u\end{Vmatrix}}}}