Nowhere continuous function

This is an old revision of this page, as edited by Valvino (talk | contribs) at 11:45, 6 May 2020 (Dirichlet function: contents moved to Dirichlet function). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In mathematics, a nowhere continuous function, also called an everywhere discontinuous function, is a function that is not continuous at any point of its ___domain. If f is a function from real numbers to real numbers, then f is nowhere continuous if for each point x there is an ε > 0 such that for each δ > 0 we can find a point y such that 0 < |xy| < δ and |f(x) − f(y)| ≥ ε. Therefore, no matter how close we get to any fixed point, there are even closer points at which the function takes not-nearby values.

More general definitions of this kind of function can be obtained, by replacing the absolute value by the distance function in a metric space, or by using the definition of continuity in a topological space.

Dirichlet function

One example of such a function is the indicator function of the rational numbers, also known as the Dirichlet function. This function is denoted as IQ or 1Q and has ___domain and codomain both equal to the real numbers. IQ(x) equals 1 if x is a rational number and 0 if x is not rational.

More generally, if E is any subset of a topological space X such that both E and the complement of E are dense in X, then the real-valued function which takes the value 1 on E and 0 on the complement of E will be nowhere continuous. Functions of this type were originally investigated by Peter Gustav Lejeune Dirichlet.[1]

Hyperreal characterisation

A real function f is nowhere continuous if its natural hyperreal extension has the property that every x is infinitely close to a y such that the difference f(x) − f(y) is appreciable (i.e., not infinitesimal).

See also

  • Blumberg theorem – even if a real function f : ℝ → ℝ is nowhere continuous, there is a dense subset D of ℝ such that the restriction of f to D is continuous.
  • Thomae's function (also known as the popcorn function) – a function that is continuous at all irrational numbers and discontinuous at all rational numbers.
  • Weierstrass function – a function continuous everywhere (inside its ___domain) and differentiable nowhere.

References

  1. ^ Lejeune Dirichlet, Peter Gustav (1829). "Sur la convergence des séries trigonométriques qui servent à représenter une fonction arbitraire entre des limites données". Journal für die reine und angewandte Mathematik. 4: 157–169.