In mathematics, the Tanc function is defined as[1] Tanc ( z ) = tan ( z ) z {\displaystyle \operatorname {Tanc} (z)={\frac {\tan(z)}{z}}}
Tanc z ≈ ( 1 + 1 3 z 2 + 2 15 z 4 + 17 315 z 6 + 62 2835 z 8 + 1382 155925 z 10 + 21844 6081075 z 12 + 929569 638512875 z 14 + O ( z 16 ) ) {\displaystyle \operatorname {Tanc} z\approx \left(1+{\frac {1}{3}}z^{2}+{\frac {2}{15}}z^{4}+{\frac {17}{315}}z^{6}+{\frac {62}{2835}}z^{8}+{\frac {1382}{155925}}z^{10}+{\frac {21844}{6081075}}z^{12}+{\frac {929569}{638512875}}z^{14}+O(z^{16})\right)} ∫ 0 z tan ( x ) x d x = ( z + 1 9 z 3 + 2 75 z 5 + 17 2205 z 7 + 62 25515 z 9 + 1382 1715175 z 11 + 21844 79053975 z 13 + 929569 9577693125 z 15 + O ( z 17 ) ) {\displaystyle \int _{0}^{z}{\frac {\tan(x)}{x}}\,dx=\left(z+{\frac {1}{9}}z^{3}+{\frac {2}{75}}z^{5}+{\frac {17}{2205}}z^{7}+{\frac {62}{25515}}z^{9}+{\frac {1382}{1715175}}z^{11}+{\frac {21844}{79053975}}z^{13}+{\frac {929569}{9577693125}}z^{15}+O(z^{17})\right)}
Tanc ( z ) = ( 1 − 7 51 z 2 + 1 255 z 4 − 2 69615 z 6 + 1 34459425 z 8 ) ( 1 − 8 17 z 2 + 7 255 z 4 − 4 9945 z 6 + 1 765765 z 8 ) − 1 {\displaystyle \operatorname {Tanc} \left(z\right)=\left(1-{\frac {7}{51}}\,{z}^{2}+{\frac {1}{255}}\,{z}^{4}-{\frac {2}{69615}}\,{z}^{6}+{\frac {1}{34459425}}\,{z}^{8}\right)\left(1-{\frac {8}{17}}\,{z}^{2}+{\frac {7}{255}}\,{z}^{4}-{\frac {4}{9945}}\,{z}^{6}+{\frac {1}{765765}}\,{z}^{8}\right)^{-1}}