Percutaneous transhepatic cholangiography

This is an old revision of this page, as edited by Cerevisae (talk | contribs) at 09:27, 13 March 2022 (Indications: clean up). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Percutaneous transhepatic cholangiography, percutaneous hepatic cholangiogram, or percutaneous transhepatic cholangiography and drainage (PTHC) is a radiological technique used to visualize the anatomy of the biliary tract. A contrast medium is injected into a bile duct in the liver, after which X-rays are taken. It allows access to the biliary tree in cases where endoscopic retrograde cholangiopancreatography has been unsuccessful. Initially reported in 1937, the procedure became popular in 1952.[1][2]

Percutaneous transhepatic cholangiography
Percutaneous transhepatic cholangiography
Other namesPercutaneous hepatic cholangiogram
ICD-9-CM87.51
OPS-301 code3-13c.1

Uses

Some uses for this procedure includes: drainage of bile/infected bile (known as percutaneous transhepatic biliary drainage, PTBD) to relieve obstructive jaundice, to place a stent to dilate a stricture in the biliary system, stone removal, and rendezvous technique[3] where guidewire from the common bile duct (CBD) meets with duodenoscope (coming from the oesophagus into the stomach and then duodenum) at the major duodenal papilla. In this rendezvous technique, the guidewire is then pulled into duodenoscope and a small blade is slide over the guidewire into the CBD and perform surgeries on a specific bile duct in the biliary system.[4] PTHC is frequently performed guide therapy of the biliary system. Rarely it is used for diagnostic purposes only.[3]

Contraindications

Among the contraindications are: increased bleeding tendency where platelets less than 100x109/litre and prothrombin time prolonged more than 2 seconds than the control. This procedure is also contraindicated in biliary tract sepsis, except to control the infection by drainage of the infected bile.[3]

Technique

Low osmolar contrast medium is used in this procedure with concentration of 150 mg/ml with 20 to 60 ml volume. Those who undergoes the procedure needs to be fasted for four hours before the procedure. Besides, antibiotics such as ciprofloxacin 500 mg to 750 mg can be given as antibiotic prophylaxis to prevent infection during the procedure. Sedation (to reduce irritability and agitation of the subject during procedure) with analgesia (painkillers) and vital signs monitoring should be set up. Before the procedure, bedside ultrasound is done to confirm the position of the dilated bile ducts in the liver. The puncture site is then marked. Bile ducts of the right liver is located in the intercostal spaces between anterior and mid axillary lines. Meanwhile, the bile ducts in the left lobe of the liver is located to the left side of the xiphisternum on the epigastric region.[3]

The number of attempts made to pass Chiba needle into the biliary tract does not affect the rate of complication but the likehood of success is related to the degree of dilatation of the biliary tract (larger dilatation means needle is easier to find its way into the biliary tract) and total number of attempts made.[3]

Excessive contrast media injection into the liver should be avoided. When there is excessive injection into the liver, lymphatics within the liver will be opacified with contrast medium. Injection of the contrast medium into an artery or vein will cause the contrast to dispersed quickly due to blood flow.[3]

Cholangiography during a biliary drainage intervention is called perioperative or primary choloangiography, and when performed later in the same drain it is called secondary cholangiography.[5]

Complications

Percutaneous transhepatic cholangiography may increase the incidence of metastasis, tube dislocation, and bleeding when compared to endoscopic biliary drainage. However, it has lower rate of cholangitis, pancreatitis when compared to endoscopic biliary drainage, probably because the latter has higher chance of incomplete drainage of infected bile, or accidental resection of papilla that causes the backflow of infected bile from the duodenum into the biliary system.[6][7]

References

  1. ^ Carter RF, Saypol GM (1952). "Transabdominal cholangiography". Journal of the American Medical Association. 148 (4): 253–5. doi:10.1001/jama.1952.02930040009002. PMID 14888454.
  2. ^ Atkinson M, Happey MG, Smiddy FG (1960). "Percutaneous transhepatic cholangiography". Gut. 1 (4): 357–65. doi:10.1136/gut.1.4.357. PMC 1413224. PMID 13684978.
  3. ^ a b c d e f Watson N, Jones H (2018). Chapman and Nakielny's Guide to Radiological Procedures. Elsevier. p. 112. ISBN 9780702071669.
  4. ^ Ayala, Juan C.; Labbe, Ricardo; Vera, Juan E. (April 2008). "SHORT (SHOrt Rendezvous Technique): A New ERCP Rendezvous Technique". Gastrointestinal Endoscopy. 67 (5): AB159 – AB160. doi:10.1016/j.gie.2008.03.351.
  5. ^ Schuberth, O. O.; Sjogren, S. E. (2010). "On Cholangiography". Acta Radiologica. 22 (5–6): 780–795. doi:10.3109/00016924109136457. ISSN 0001-6926.
  6. ^ Duan, Feng; Cui, Li; Bai, Yanhua; Li, Xiaohui; Yan, Jieyu; Liu, Xuan (December 2017). "Comparison of efficacy and complications of endoscopic and percutaneous biliary drainage in malignant obstructive jaundice: a systematic review and meta-analysis". Cancer Imaging. 17 (1): 27. doi:10.1186/s40644-017-0129-1. ISSN 1470-7330. PMC 5644169. PMID 29037223.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  7. ^ Wang, Lei; Lin, Nanping; Xin, Fuli; Ke, Qiao; Zeng, Yongyi; Liu, Jingfeng (December 2019). "A systematic review of the comparison of the incidence of seeding metastasis between endoscopic biliary drainage and percutaneous transhepatic biliary drainage for resectable malignant biliary obstruction". World Journal of Surgical Oncology. 17 (1): 116. doi:10.1186/s12957-019-1656-y. ISSN 1477-7819. PMC 6612106. PMID 31277666.{{cite journal}}: CS1 maint: unflagged free DOI (link)