sandbox
fweeee! throws sand
lim n → ∞ [ ∑ x = 1 n 1 x 2 ] = π 2 6 {\displaystyle \lim _{n\to \infty }{\Bigg \lbrack }\sum _{x=1}^{n}{\frac {1}{x^{2}}}{\Bigg \rbrack }={\frac {\pi ^{2}}{6}}}
( − ℏ 2 2 m ∇ 2 + V ( r , t ) − i ℏ ∂ ∂ t ) ψ = 0 {\displaystyle {\Bigg (}{\frac {-\hbar ^{2}}{2m}}\nabla ^{2}+V(r,t)-i\hbar {\frac {\partial }{\partial t}}{\Bigg )}\psi =0}
∇ ⋅ B = 0 {\displaystyle \nabla \cdot \mathbf {B} =0}
∇ ⋅ D = ρ {\displaystyle \nabla \cdot \mathbf {D} =\rho }
∇ × H = J + ∂ D ∂ t {\displaystyle \nabla \times \mathbf {H} =\mathbf {J} +{\frac {\partial \mathbf {D} }{\partial t}}}
∇ × E = − ∂ B ∂ t {\displaystyle \nabla \times \mathbf {E} =-{\frac {\partial \mathbf {B} }{\partial t}}}
Maxwell's equations
F = q ( E + v × B ) {\displaystyle \mathbf {F} =q(\mathbf {E} +\mathbf {v} \times \mathbf {B} )}
F G = G m 1 m 2 r 3 r {\displaystyle \mathbf {F_{G}} ={\frac {Gm_{1}m_{2}}{r^{3}}}\mathbf {r} }
F = d d t ( m v 1 − v 2 c 2 ) {\displaystyle F={\frac {d}{dt}}{\Bigg (}{\frac {mv}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}{\Bigg )}}
E = 2 c B {\displaystyle \mathbf {E} =2c\mathbf {B} }
Mairead Corrigan Maguire
Mairead Maguire