Properties
The first-order derivative is given by
sech
2
(
z
)
z
−
tanh
(
z
)
z
2
{\displaystyle {\frac {\operatorname {sech} ^{2}(z)}{z}}-{\frac {\tanh(z)}{z^{2}}}}
The Taylor series expansion
tanhc
z
≈
(
1
−
1
3
z
2
+
2
15
z
4
−
17
315
z
6
+
62
2835
z
8
−
1382
155925
z
10
+
21844
6081075
z
12
−
929569
638512875
z
14
+
O
(
z
16
)
)
{\displaystyle \operatorname {tanhc} z\approx \left(1-{\frac {1}{3}}z^{2}+{\frac {2}{15}}z^{4}-{\frac {17}{315}}z^{6}+{\frac {62}{2835}}z^{8}-{\frac {1382}{155925}}z^{10}+{\frac {21844}{6081075}}z^{12}-{\frac {929569}{638512875}}z^{14}+O(z^{16})\right)}
which leads to the series expansion of the integral as
∫
0
z
tanh
(
x
)
x
d
x
=
(
z
−
1
9
z
3
+
2
75
z
5
−
17
2205
z
7
+
62
25515
z
9
−
1382
1715175
z
11
+
O
(
z
13
)
)
{\displaystyle \int _{0}^{z}\!{\frac {\tanh \left(x\right)}{x}}{dx}=(z-{\frac {1}{9}}{z}^{3}+{\frac {2}{75}}{z}^{5}-{\frac {17}{2205}}{z}^{7}+{\frac {62}{25515}}{z}^{9}-{\frac {1382}{1715175}}{z}^{11}+O\left({z}^{13}\right))}
The Padé approximant is
tanhc
(
z
)
=
(
1
+
7
51
z
2
+
1
255
z
4
+
2
69615
z
6
+
1
34459425
z
8
)
(
1
+
8
17
z
2
+
7
255
z
4
+
4
9945
z
6
+
1
765765
z
8
)
−
1
{\displaystyle \operatorname {tanhc} \left(z\right)=\left(1+{\frac {7}{51}}\,{z}^{2}+{\frac {1}{255}}\,{z}^{4}+{\frac {2}{69615}}\,{z}^{6}+{\frac {1}{34459425}}\,{z}^{8}\right)\left(1+{\frac {8}{17}}\,{z}^{2}+{\frac {7}{255}}\,{z}^{4}+{\frac {4}{9945}}\,{z}^{6}+{\frac {1}{765765}}\,{z}^{8}\right)^{-1}}
In terms of other special functions
tanhc
(
z
)
=
2
K
u
m
m
e
r
M
(
1
,
2
,
2
z
)
(
2
i
z
+
π
)
K
u
m
m
e
r
M
(
1
,
2
,
i
π
−
2
z
)
e
2
z
−
1
/
2
i
π
{\displaystyle \operatorname {tanhc} (z)=2\,{\frac {{\rm {KummerM}}\left(1,\,2,\,2\,z\right)}{(2\,iz+\pi ){\rm {KummerM}}(1,\,2,\,i\pi -2\,z)e^{2\,z-1/2\,i\pi }}}}
, where
K
u
m
m
e
r
M
(
a
,
b
,
z
)
{\displaystyle {\rm {KummerM}}(a,b,z)}
is Kummer's confluent hypergeometric function .
tanhc
(
z
)
=
2
HeunB
(
2
,
0
,
0
,
0
,
2
z
)
(
2
i
z
+
π
)
HeunB
(
2
,
0
,
0
,
0
,
2
1
/
2
i
π
−
z
)
e
2
z
−
1
/
2
i
π
{\displaystyle \operatorname {tanhc} (z)=2{\frac {\operatorname {HeunB} (2,0,0,0,{\sqrt {2}}{\sqrt {z}})}{(2iz+\pi )\operatorname {HeunB} (2,0,0,0,{\sqrt {2}}{\sqrt {1/2\,i\pi -z}})e^{2\,z-1/2\,i\pi }}}}
, where
H
e
u
n
B
(
q
,
α
,
γ
,
δ
,
ϵ
,
z
)
{\displaystyle {\rm {HeunB}}(q,\alpha ,\gamma ,\delta ,\epsilon ,z)}
is the biconfluent Heun function .
tanhc
(
z
)
=
i
W
h
i
t
t
a
k
e
r
M
(
0
,
1
/
2
,
2
z
)
W
h
i
t
t
a
k
e
r
M
(
0
,
1
/
2
,
i
π
−
2
z
)
z
{\displaystyle \operatorname {tanhc} (z)={\frac {i{\rm {\ WhittakerM}}(0,\,1/2,\,2\,z)}{{\rm {WhittakerM}}(0,\,1/2,\,i\pi -2\,z)}}z}
, where
W
h
i
t
t
a
k
e
r
M
(
a
,
b
,
z
)
{\displaystyle {\rm {WhittakerM}}(a,b,z)}
is a Whittaker function .
Gallery
Tanhc abs complex 3D
Tanhc Im complex 3D plot
Tanhc Re complex 3D plot
Tanhc'(z) Im complex 3D plot
Tanhc'(z) Re complex 3D plot
Tanhc'(z) abs complex 3D plot
Tanhc abs plot
Tanhc Im plot
Tanhc Re plot
Tanhc'(z) Im plot
Tanhc'(z) abs plot
Tanhc'(z) Re plot
Tanhc integral abs 3D plot
Tanhc integral Im 3D plot
Tanhc integral Re 3D plot
Tanhc integral abs density plot
Tanhc integral Im density plot
Tanhc integral Re density plot
See also
References