In mathematics,
Definition
We first define the sheaf of formal microdifferential operators on the cotangent bundle of an open subset .[1] A section of that sheaf over an open subset is a formal series: for some integer m,
where each is a holomorphic function on that is homogeneous of degree in the second variable.
The sheaf of microdifferential operators on is then a formal microdifferential operator that satisfies the growh condition on the negative terms; namely, for each compact subset , there exists an such that
See also
Reference
Notes
- ^ Schapira 1985, Ch. I., § 1.2.
- ^ Schapira 1985, Ch. I., § 1.3.
Works
- Aoki, T., Calcul exponentiel des opérateurs microdifférentiels d'ordre infini, I, Ann. Inst. Fourier, Grenoble, 33–4 (1983), 227–250.
- Schapira, Pierre (1985). Microdifferential Systems in the Complex Domain. Grundlehren der mathematischen Wissenschaften. Vol. 269. Springer. doi:10.1007/978-3-642-61665-5. ISBN 978-3-642-64904-2.