In mathematics, a microdiiferential operator is a linear operator on a cotangent bundle (phase space) that generalizes a differential operator and appears in the framework of microlocal analysis.
Definition
We first define the sheaf of formal microdifferential operators on the cotangent bundle of an open subset .[1] A section of that sheaf over an open subset is a formal series: for some integer m,
where each is a holomorphic function on that is homogeneous of degree in the second variable.
The sheaf of microdifferential operators on is then the subsheaf of consisting of those satisfying the growh condition on the negative terms; namely, for each compact subset , there exists an such that
See also
Reference
Notes
- ^ Schapira 1985, Ch. I., § 1.2.
- ^ Schapira 1985, Ch. I., § 1.3.
Works
- Aoki, T., Calcul exponentiel des opérateurs microdifférentiels d'ordre infini, I, Ann. Inst. Fourier, Grenoble, 33–4 (1983), 227–250.
- Schapira, Pierre (1985). Microdifferential Systems in the Complex Domain. Grundlehren der mathematischen Wissenschaften. Vol. 269. Springer. doi:10.1007/978-3-642-61665-5. ISBN 978-3-642-64904-2.