Quantum Computing using Bloch sphere
Bloch Sphere Quantum Computing — Relation to the Bloch Sphere
The C-Wave model can be described using the Bloch sphere, a standard representation of single-qubit states in quantum computing.[1] Each point on the Bloch sphere corresponds to a possible qubit state, providing a geometric visualization of superposition and phase.[2] By mapping C-Wave’s mode-counting approach onto the Bloch sphere, the model can be related to conventional qubit-based quantum computing, allowing comparison with established quantum information frameworks.[3]
Introduction
Formula and meaning of C
Formula (mode-counting)
where:
Definition of C
Derivation from mode-counting
- Volume of a sphere: [11]
- Number of spatial modes up to : [12]
- Time-slot factor: [13]
- Total number of orthogonal slots: [14]
- Relation to original notation: with : [15]
Numerical examples
Scenario | ||||
---|---|---|---|---|
A — Superconducting chip | 5 mm | 10 GHz | 300 μs | |
B — Optical scale | 1 cm | 200 THz | 1 μs | |
C — Microscale | 1 μm | 1 THz | 1 ns |
Implications and limitations
- Control and addressing: Large does not automatically imply usable capacity; hardware constraints matter.[17]
- Coherence and dephasing: Limit the effectively usable time .[18]
- Energy cut-offs: Necessary in CV systems to achieve finite .[19]
Recommended formulation for publication
“The information capacity of a 4D sphere with radius and time window is given by:”[20]
where and determines the number of bits per mode.[22]
References
- ^ Nielsen, Michael A.; Chuang, Isaac L. (2010). Quantum Computation and Quantum Information. Cambridge University Press. ISBN 9781107002173.
- ^ Braunstein, Samuel L.; van Loock, Peter (2005). "Quantum information with continuous variables". Reviews of Modern Physics. 77: 513–577. doi:10.1103/RevModPhys.77.513.
- ^ Asfaw, Abraham (2022). "Building a quantum engineering undergraduate program". IEEE Transactions on Education. 65 (3): 220–242. doi:10.1109/TE.2022.3144943.
- ^ Braunstein, Samuel L.; van Loock, Peter (2005). "Quantum information with continuous variables". Reviews of Modern Physics. 77: 513–577. doi:10.1103/RevModPhys.77.513.
- ^ Braunstein, Samuel L.; van Loock, Peter (2005). "Quantum information with continuous variables". Reviews of Modern Physics. 77: 513–577. doi:10.1103/RevModPhys.77.513.
- ^ Nielsen, Michael A.; Chuang, Isaac L. (2010). Quantum Computation and Quantum Information. Cambridge University Press. ISBN 9781107002173.
- ^ Kohnle, Antje (2013). "A new introductory quantum mechanics curriculum". European Journal of Physics. 35 (1). doi:10.48550/arXiv.1307.1484.
- ^ Braunstein, Samuel L.; van Loock, Peter (2005). "Quantum information with continuous variables". Reviews of Modern Physics. 77: 513–577. doi:10.1103/RevModPhys.77.513.
- ^ Nielsen, Michael A.; Chuang, Isaac L. (2010). Quantum Computation and Quantum Information. Cambridge University Press. ISBN 9781107002173.
- ^ Braunstein, Samuel L.; van Loock, Peter (2005). "Quantum information with continuous variables". Reviews of Modern Physics. 77: 513–577. doi:10.1103/RevModPhys.77.513.
- ^ Nielsen, Michael A.; Chuang, Isaac L. (2010). Quantum Computation and Quantum Information. Cambridge University Press. ISBN 9781107002173.
- ^ Braunstein, Samuel L.; van Loock, Peter (2005). "Quantum information with continuous variables". Reviews of Modern Physics. 77: 513–577. doi:10.1103/RevModPhys.77.513.
- ^ Kohnle, Antje (2013). "A new introductory quantum mechanics curriculum". European Journal of Physics. 35 (1). doi:10.48550/arXiv.1307.1484.
- ^ Braunstein, Samuel L.; van Loock, Peter (2005). "Quantum information with continuous variables". Reviews of Modern Physics. 77: 513–577. doi:10.1103/RevModPhys.77.513.
- ^ Braunstein, Samuel L.; van Loock, Peter (2005). "Quantum information with continuous variables". Reviews of Modern Physics. 77: 513–577. doi:10.1103/RevModPhys.77.513.
- ^ Kohnle, Antje (2013). "A new introductory quantum mechanics curriculum". European Journal of Physics. 35 (1). doi:10.48550/arXiv.1307.1484.
- ^ Cywiński, Łukasz (2008). "How to enhance dephasing time in superconducting qubits". Physical Review B. 77: 174509. doi:10.1103/PhysRevB.77.174509.
- ^ Cywiński, Łukasz (2008). "How to enhance dephasing time in superconducting qubits". Physical Review B. 77: 174509. doi:10.1103/PhysRevB.77.174509.
- ^ Braunstein, Samuel L.; van Loock, Peter (2005). "Quantum information with continuous variables". Reviews of Modern Physics. 77: 513–577. doi:10.1103/RevModPhys.77.513.
- ^ Braunstein, Samuel L.; van Loock, Peter (2005). "Quantum information with continuous variables". Reviews of Modern Physics. 77: 513–577. doi:10.1103/RevModPhys.77.513.
- ^ Braunstein, Samuel L.; van Loock, Peter (2005). "Quantum information with continuous variables". Reviews of Modern Physics. 77: 513–577. doi:10.1103/RevModPhys.77.513.
- ^ Nielsen, Michael A.; Chuang, Isaac L. (2010). Quantum Computation and Quantum Information. Cambridge University Press. ISBN 9781107002173.