Draft:Bloch sphere representation in mode-counting quantum models

This is an old revision of this page, as edited by Harold Foppele (talk | contribs) at 19:39, 15 August 2025. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Quantum Computing using Bloch sphere

Bloch Sphere Quantum Computing — Relation to the Bloch Sphere

The C-Wave model can be described using the Bloch sphere, a standard representation of single-qubit states in quantum computing.[1] Each point on the Bloch sphere corresponds to a possible qubit state, providing a geometric visualization of superposition and phase.[2] By mapping C-Wave’s mode-counting approach onto the Bloch sphere, the model can be related to conventional qubit-based quantum computing, allowing comparison with established quantum information frameworks.[3]

Introduction

 
Schematic

Formula and meaning of C

Formula (mode-counting)

 [4]

where:

  •   (polarization factor)[5]
  •   = maximum frequency cut-off[6]
  •   = speed of light[7]

Definition of C

 [8]

  • Qubit encoding:  [9]
  • Continuous-variable encoding:  , where   is the maximum photon number.[10]
 
Parameter

Derivation from mode-counting

  1. Volume of a sphere:  [11]
  2. Number of spatial modes up to  :  [12]
  3. Time-slot factor:  [13]
  4. Total number of orthogonal slots:  [14]
  5. Relation to original notation: with  :  [15]

Numerical examples

<thead> </thead> <tbody> </tbody>
Scenario        
A — Superconducting chip 5 mm 10 GHz 300 μs  
B — Optical scale 1 cm 200 THz 1 μs  
C — Microscale 1 μm 1 THz 1 ns  

[16]

 
Scenarios

Implications and limitations

  • Control and addressing: Large   does not automatically imply usable capacity; hardware constraints matter.[17]
  • Coherence and dephasing: Limit the effectively usable time  .[18]
  • Energy cut-offs: Necessary in CV systems to achieve finite  .[19]
 
Cutoff

“The information capacity of a 4D sphere with radius   and time window   is given by:”[20]

 [21]

where   and   determines the number of bits per mode.[22]

References

  1. ^ Nielsen, Michael A.; Chuang, Isaac L. (2010). Quantum Computation and Quantum Information. Cambridge University Press. ISBN 9781107002173.
  2. ^ Braunstein, Samuel L.; van Loock, Peter (2005). "Quantum information with continuous variables". Reviews of Modern Physics. 77: 513–577. doi:10.1103/RevModPhys.77.513.
  3. ^ Asfaw, Abraham (2022). "Building a quantum engineering undergraduate program". IEEE Transactions on Education. 65 (3): 220–242. doi:10.1109/TE.2022.3144943.
  4. ^ Braunstein, Samuel L.; van Loock, Peter (2005). "Quantum information with continuous variables". Reviews of Modern Physics. 77: 513–577. doi:10.1103/RevModPhys.77.513.
  5. ^ Braunstein, Samuel L.; van Loock, Peter (2005). "Quantum information with continuous variables". Reviews of Modern Physics. 77: 513–577. doi:10.1103/RevModPhys.77.513.
  6. ^ Nielsen, Michael A.; Chuang, Isaac L. (2010). Quantum Computation and Quantum Information. Cambridge University Press. ISBN 9781107002173.
  7. ^ Kohnle, Antje (2013). "A new introductory quantum mechanics curriculum". European Journal of Physics. 35 (1). doi:10.48550/arXiv.1307.1484.
  8. ^ Braunstein, Samuel L.; van Loock, Peter (2005). "Quantum information with continuous variables". Reviews of Modern Physics. 77: 513–577. doi:10.1103/RevModPhys.77.513.
  9. ^ Nielsen, Michael A.; Chuang, Isaac L. (2010). Quantum Computation and Quantum Information. Cambridge University Press. ISBN 9781107002173.
  10. ^ Braunstein, Samuel L.; van Loock, Peter (2005). "Quantum information with continuous variables". Reviews of Modern Physics. 77: 513–577. doi:10.1103/RevModPhys.77.513.
  11. ^ Nielsen, Michael A.; Chuang, Isaac L. (2010). Quantum Computation and Quantum Information. Cambridge University Press. ISBN 9781107002173.
  12. ^ Braunstein, Samuel L.; van Loock, Peter (2005). "Quantum information with continuous variables". Reviews of Modern Physics. 77: 513–577. doi:10.1103/RevModPhys.77.513.
  13. ^ Kohnle, Antje (2013). "A new introductory quantum mechanics curriculum". European Journal of Physics. 35 (1). doi:10.48550/arXiv.1307.1484.
  14. ^ Braunstein, Samuel L.; van Loock, Peter (2005). "Quantum information with continuous variables". Reviews of Modern Physics. 77: 513–577. doi:10.1103/RevModPhys.77.513.
  15. ^ Braunstein, Samuel L.; van Loock, Peter (2005). "Quantum information with continuous variables". Reviews of Modern Physics. 77: 513–577. doi:10.1103/RevModPhys.77.513.
  16. ^ Kohnle, Antje (2013). "A new introductory quantum mechanics curriculum". European Journal of Physics. 35 (1). doi:10.48550/arXiv.1307.1484.
  17. ^ Cywiński, Łukasz (2008). "How to enhance dephasing time in superconducting qubits". Physical Review B. 77: 174509. doi:10.1103/PhysRevB.77.174509.
  18. ^ Cywiński, Łukasz (2008). "How to enhance dephasing time in superconducting qubits". Physical Review B. 77: 174509. doi:10.1103/PhysRevB.77.174509.
  19. ^ Braunstein, Samuel L.; van Loock, Peter (2005). "Quantum information with continuous variables". Reviews of Modern Physics. 77: 513–577. doi:10.1103/RevModPhys.77.513.
  20. ^ Braunstein, Samuel L.; van Loock, Peter (2005). "Quantum information with continuous variables". Reviews of Modern Physics. 77: 513–577. doi:10.1103/RevModPhys.77.513.
  21. ^ Braunstein, Samuel L.; van Loock, Peter (2005). "Quantum information with continuous variables". Reviews of Modern Physics. 77: 513–577. doi:10.1103/RevModPhys.77.513.
  22. ^ Nielsen, Michael A.; Chuang, Isaac L. (2010). Quantum Computation and Quantum Information. Cambridge University Press. ISBN 9781107002173.