Talk:Quaternions and spatial rotation

This is an old revision of this page, as edited by JWWalker (talk | contribs) at 19:59, 12 March 2005 (remark on specifying a rotation). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

This article is marked:

Author: M. Romero Schmidtke.
Translator: August Pieres.

Please can the authors confirm that this is original work, donated under the GFDL?

The article appears to be a translation from this Enciclopedia Libre article; M.Romero Schmidtke is a regular contributor there. AxelBoldt 01:26 Apr 7, 2003 (UTC)


Thank you, August Piers, for this translation of my article. I would surely not have done better. And yes, it is an original work, writen specifically for enciclopedia libre and the spanish wikipedia.

M. Romero Schmidtke, April 26 , 2003.

The following text was cut from the main page. -- Fropuff 03:48, 2004 Aug 2 (UTC)

a thought

One can specify a rotation in n dimensions by specifying two unit vectors A and B. The specified rotation is that which maps A onto B. The axis of rotation in n dmensions is a surface of (n-2) dimensions. Only in three dimensions is this axis itself one-dimensional.

I would guess, then, that a quaternion of rotation is equivalent to the cross product of the two unit vectors A and B, which is also a vector only in three-space, and whose magnitude also varies as the sin of the angle.

I'm not sure what you mean by "The specified rotation is that which maps A onto B." In 3 dimensions, there can be many rotations that map A onto B, not just the ones with the cross product as axis. Jwwalker