Complement graph

This is an old revision of this page, as edited by Abdull (talk | contribs) at 13:15, 25 July 2008. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In graph theory the complement or inverse of a graph is a graph on the same vertices such that two vertices of are adjacent if and only if they are not adjacent in . That is to find the complement of a graph, you fill in all the missing edges to get a complete graph, and remove all the edges that were already there. It is not the set complement of the graph; only the edges are complemented.

The Petersen graph (on the left) and its complement graph (on the right).

Formal construction

Given graph   of vertices   and edges  , construct its complement graph   by:

  •   and
  • for a clique   of   vertices,  .


The complement graph is used in several graph theories and demonstrations, such as the Ramsey theory, and different reductions for proofs of NP-Completeness.