Algoritmo rho di Pollard

Versione del 21 ott 2009 alle 07:29 di Xqbot (discussione | contributi) (Bot: Aggiungo: vi:Thuật toán RHO; modifiche estetiche)

L'algoritmo rho di Pollard è un algoritmo di fattorizzazione di numeri interi, basato sull'aritmetica modulare. Ideato da John Pollard nel 1975, è adatto in particolare alla ricerca di fattori piccoli; è stato usato nel 1981 per fattorizzare l'ottavo numero di Fermat. È un algoritmo probabilistico, nel senso che non garantisce di produrre un risultato.

Algoritmo

L'algoritmo si basa sulla generazione di una sequenza pseudo-casuale di numeri modulo n (che è il numero che si cerca di fattorizzare): una sequenza ampiamente usata è

 

dove xk è il k-esimo numero della sequenza. Se la successione è "sufficientemente casuale", allora si dovrebbe osservare un ciclo dopo circa   iterazione; se però p è un fattore di n, allora la sequenza si ripeterà anche modulo p, ma dopo circa   passi.

Poiché tuttavia p non è conosciuto, bisogna ricorrere ad un altro metodo per verificare le eventuali ripetizioni, e cioè calcolare il massimo comun divisore tra n e la differenza xi-xj, per ogni coppia (i,j). Nella pratica, tuttavia, calcolare il massimo comun divisore per ogni coppia di indici renderebbe il test molto lento, quasi quanto il metodo delle divisioni per tentativi: si può dimostrare però che è sufficiente considerare le differenze x2i-xi, velocizzando notevolmente l'esecuzione dell'algoritmo.

È possibile tuttavia che il massimo comun divisore sia n: in tal caso l'algoritmo ha fallito, ed è necessario riprovare con un'altra sequenza, oppure con un diverso punto di partenza. Se n' è primo, il metodo fallisce per ogni successione e ogni punto di partenza.

La complessità computazionale dell'algoritmo è, nella notazione O-grande,   dove p è il fattore di n; volendolo esprimere in funzione di quest'ultimo, è  

Pseudocodice

  1. x=2, y=2, d=1;
  2. Se d=1
    1. x=f(x);
    2. y=f(f(x));
    3. d=MCD(x,y);
  3. Se d=n l'algoritmo fallisce; altrimenti d divide n

Bibliografia

Collegamenti esterni

  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica