The temperature dependence of liquid viscosity is usually expressed by one of the following models:
Exponential model
where T is temperature and and are coefficients. See first-order fluid and second-order fluid. This is an empirical model that usually works for a limited range of temperatures.
Arrhenius model
The model is based on the assumption that the fluid flow obeys the Arrhenius equation for molecular kinetics:
where T is temperature, is a coefficient, E is the activation energy and R is the universal gas constant. A first-order fluid is another name for a power-law fluid with exponential dependence of viscosity on temperature.
WLF model
The Williams-Landel-Ferry model or WLF for short is usually used for polymer melt,s or other fluids that have a glass transition temperature.
The model is:
where T-temperature, , , and are empiric parameters (only three of them are independent from each other).
If one selects the parameter based on the glass transition temperature, then the parameters , become very similar for the wide class of polymers. Typically, if is set to match the glass transition temperature , we get
- 17.44
and
- 51.6°K.
Van Krevelen recommends to choose
- °K, then
- 8.86
and
- 101.6°K.
Using such universal parameters allows one to guess the temperature dependence of a polymer by knowing the viscosity at a single temperature.
In reality the universal parameters are not that universal, and it is much better to fit the WLF parameters from the experimental data.