Quantum complexity theory

This is an old revision of this page, as edited by RobinK (talk | contribs) at 00:02, 28 September 2009 (Started article with an introduction). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Quantum complexity theory is a part of computational complexity theory in theoretical computer science. It studies complexity classes defined using quantum computers and quantum information which are computational models based on quantum mechanics. It studies the hardness of problems in relation to these complexity classes, and the relationship between quantum complexity classes and classical (i.e., non-quantum) complexity classes.

A complexity class is a collection of problems which can be solved by some computational model under resource constraints. For instance, the complexity class P is defined to be the set of problems solvable by a Turing machine in polynomial time. Similarly, one may define a quantum complexity class using a quantum model of computation, such as a standard quantum computer or a quantum Turing machine. Thus, the complexity class BQP is defined to be the set of problems solvable by a quantum computer in polynomial time with bounded error.

Two important quantum complexity classes are BQP and QMA which are the bounded-error quantum analogues of P and NP. One of the main aims of quantum complexity theory is to find out where these classes lie with respect to classical complexity classes such as P, NP, PP, PSPACE and other complexity classes.

References

. arXiv:0804.3401v1. {{cite arXiv}}: Missing or empty |title= (help) A bot will complete this citation soon. Click here to jump the queue