The methods that you will use to factor any polynomial depend on how many terms the polynomial has.
Any Polynomial
The first step, no matter what you are factoring, is always to factor out the Greatest Common Factor , commonly referred to as the GCF .
For example:
2
a
2
b
3
+
4
a
4
b
4
c
3
−
2
a
3
b
3
=
2
a
2
b
3
(
1
+
2
a
2
b
c
3
−
a
)
,
{\displaystyle 2a^{2}b^{3}+4a^{4}b^{4}c^{3}-2a^{3}b^{3}=2a^{2}b^{3}(1+2a^{2}bc^{3}-a),\,\!}
or
3
x
3
−
6
x
+
9
x
4
=
3
x
(
x
2
−
2
+
3
x
3
)
,
{\displaystyle 3x^{3}-6x+9x^{4}=3x(x^{2}-2+3x^{3}),\,\!}
or
4
x
(
x
+
2
)
+
3
x
2
(
x
+
2
)
=
(
x
+
2
)
(
4
x
+
3
x
2
)
,
{\displaystyle 4x(x+2)+3x^{2}(x+2)=(x+2)(4x+3x^{2}),\,\!}
Binomial--2 Terms
Again, the first step is to factor out the GCF. If there is no GCF, then there are only 3 possibilities:
Difference of Squares , Sum of Cubes , or Difference of Cubes .
Difference of Squares:
x
2
−
y
2
=
(
x
+
y
)
(
x
−
y
)
,
{\displaystyle x^{2}-y^{2}=(x+y)(x-y),\,\!}
For example:
y
2
−
9
=
(
y
+
3
)
(
y
−
3
)
,
{\displaystyle y^{2}-9=(y+3)(y-3),\,\!}
or
16
a
2
−
49
b
2
=
(
4
a
+
7
b
)
(
4
a
−
7
b
)
.
{\displaystyle 16a^{2}-49b^{2}=(4a+7b)(4a-7b).\,\!}
Sum of Cubes:
x
3
+
y
3
=
(
x
+
y
)
(
x
2
−
x
y
+
y
2
)
,
{\displaystyle x^{3}+y^{3}=(x+y)(x^{2}-xy+y^{2}),\,\!}
For example:
z
3
+
27
=
(
z
+
3
)
(
z
2
−
3
z
+
9
)
,
{\displaystyle z^{3}+27=(z+3)(z^{2}-3z+9),\,\!}
or
8
x
3
+
125
=
(
2
x
)
3
+
(
5
)
3
=
(
2
x
+
5
)
[
(
2
x
)
2
−
(
5
)
(
2
x
)
+
(
5
)
2
]
=
(
2
x
+
5
)
(
4
x
2
−
10
x
+
5
)
.
{\displaystyle 8x^{3}+125=(2x)^{3}+(5)^{3}=(2x+5)[(2x)^{2}-(5)(2x)+(5)^{2}]=(2x+5)(4x^{2}-10x+5).\,\!}
Difference of Cubes:
x
3
−
y
3
=
(
x
−
y
)
(
x
2
+
x
y
+
y
2
)
,
{\displaystyle x^{3}-y^{3}=(x-y)(x^{2}+xy+y^{2}),\,\!}
For example:
z
3
−
27
=
(
z
−
3
)
(
z
2
+
3
z
+
9
)
,
{\displaystyle z^{3}-27=(z-3)(z^{2}+3z+9),\,\!}
or
8
x
3
−
125
=
(
2
x
)
3
−
(
5
)
3
=
(
2
x
−
5
)
[
(
2
x
)
2
+
(
5
)
(
2
x
)
+
(
5
)
2
]
=
(
2
x
−
5
)
(
4
x
2
+
10
x
+
5
)
.
{\displaystyle 8x^{3}-125=(2x)^{3}-(5)^{3}=(2x-5)[(2x)^{2}+(5)(2x)+(5)^{2}]=(2x-5)(4x^{2}+10x+5).\,\!}
Trinomial
References
External links