In matematica e in particolare in combinatoria, per identità combinatoria si intende una uguaglianza fra due espressioni le quali sono interpretabili come cardinalità di due insiemi di oggetti discreti (sottoinsiemi di insiemi finiti, combinazioni di estrazioni, orbite di gruppi di trasformazioni, grafi, cammini nel piano combinatorio, polinomi a coefficienti razionali semplici, configurazioni geometriche discrete, ...) che si possono porre in corrispondenza biunivoca, oppure si possono ricavare formalmente da identità come le precedenti. Molte di queste identità riguardano funzioni speciali. Di molte sono possibili interpretazioni geometriche.

Alcuni esempi:

  • Sottoinsiemi delle diverse cardinalità di insieme di cardinalità n


  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica