This article
needs attention from an expert on the subject . Please add a
reason or a
talk parameter to this template to explain the issue with the article.
When placing this tag, consider associating this request with a WikiProject . (April 2011 )
Development
Three spheres of known centers A, B, C and known radii AD, BD, CD intersect at two points D and D' . Similarly, three sticks of known length are planted in the ground at known coordinates . The other ends meet at a calculated apex . Calculating D and D' , the projection[ 1] of AD onto AB and AC , and the projection of BD onto BC results in,
M
A
B
=
A
+
A
D
cos
(
∠
B
A
D
)
A
B
‖
A
B
‖
=
A
+
[
(
A
D
)
2
+
(
A
B
)
2
−
(
B
D
)
2
2
(
A
B
)
2
]
A
B
{\displaystyle \mathbf {M_{AB}} =\mathbf {A} +AD\cos(\angle {BAD}){\dfrac {\mathbf {AB} }{\left\Vert \mathbf {AB} \right\|}}=\mathbf {A} +\left[{\dfrac {(AD)^{2}+(AB)^{2}-(BD)^{2}}{2(AB)^{2}}}\right]\mathbf {AB} }
M
A
C
=
A
+
A
D
cos
(
∠
C
A
D
)
A
C
‖
A
C
‖
=
A
+
[
(
A
D
)
2
+
(
A
C
)
2
−
(
C
D
)
2
2
(
A
C
)
2
]
A
C
{\displaystyle \mathbf {M_{AC}} =\mathbf {A} +AD\cos(\angle {CAD}){\dfrac {\mathbf {AC} }{\left\Vert \mathbf {AC} \right\|}}=\mathbf {A} +\left[{\dfrac {(AD)^{2}+(AC)^{2}-(CD)^{2}}{2(AC)^{2}}}\right]\mathbf {AC} }
M
B
C
=
B
+
B
D
cos
(
∠
C
B
D
)
B
C
‖
B
C
‖
=
B
+
[
(
B
D
)
2
+
(
B
C
)
2
−
(
C
D
)
2
2
(
B
C
)
2
]
B
C
{\displaystyle \mathbf {M_{BC}} =\mathbf {B} +BD\cos(\angle {CBD}){\dfrac {\mathbf {BC} }{\left\Vert \mathbf {BC} \right\|}}=\mathbf {B} +\left[{\dfrac {(BD)^{2}+(BC)^{2}-(CD)^{2}}{2(BC)^{2}}}\right]\mathbf {BC} }
(
B
D
)
2
=
(
A
B
)
2
+
(
A
D
)
2
−
2
(
A
B
)
(
A
D
)
cos
(
∠
B
A
D
)
{\displaystyle (BD)^{2}=(AB)^{2}+(AD)^{2}-2(AB)(AD)\cos(\angle {BAD})}
(
C
D
)
2
=
(
A
C
)
2
+
(
A
D
)
2
−
2
(
A
C
)
(
A
D
)
cos
(
∠
C
A
D
)
{\displaystyle (CD)^{2}=(AC)^{2}+(AD)^{2}-2(AC)(AD)\cos(\angle {CAD})}
(
C
D
)
2
=
(
B
C
)
2
+
(
B
D
)
2
−
2
(
B
C
)
(
B
D
)
cos
(
∠
C
B
D
)
{\displaystyle (CD)^{2}=(BC)^{2}+(BD)^{2}-2(BC)(BD)\cos(\angle {CBD})}
By the law of cosines .
The three unit normals to AB , AC and BC in the plane of ABC are:
N
A
B
=
A
C
−
A
C
∙
A
B
(
A
B
)
2
A
B
‖
A
C
−
A
C
∙
A
B
(
A
B
)
2
A
B
‖
{\displaystyle \mathbf {N_{AB}} ={\cfrac {\mathbf {AC} -{\cfrac {\mathbf {AC} \bullet \mathbf {AB} }{(AB)^{2}}}\mathbf {AB} }{\left\Vert {\mathbf {AC} -{\cfrac {\mathbf {AC} \bullet \mathbf {AB} }{(AB)^{2}}}\mathbf {AB} }\right\|}}}
N
A
C
=
A
B
−
A
B
∙
A
C
(
A
C
)
2
A
C
‖
A
B
−
A
B
∙
A
C
(
A
C
)
2
A
C
‖
{\displaystyle \mathbf {N_{AC}} ={\cfrac {\mathbf {AB} -{\cfrac {\mathbf {AB} \bullet \mathbf {AC} }{(AC)^{2}}}\mathbf {AC} }{\left\Vert {\mathbf {AB} -{\cfrac {\mathbf {AB} \bullet \mathbf {AC} }{(AC)^{2}}}\mathbf {AC} }\right\|}}}
N
B
C
=
A
B
−
A
B
∙
B
C
(
B
C
)
2
B
C
‖
A
B
−
A
B
∙
B
C
(
B
C
)
2
B
C
‖
{\displaystyle \mathbf {N_{BC}} ={\cfrac {\mathbf {AB} -{\cfrac {\mathbf {AB} \bullet \mathbf {BC} }{(BC)^{2}}}\mathbf {BC} }{\left\Vert {\mathbf {AB} -{\cfrac {\mathbf {AB} \bullet \mathbf {BC} }{(BC)^{2}}}\mathbf {BC} }\right\|}}}
Then the three vectors intersect at a common point:
M
A
B
+
m
A
B
N
A
B
=
M
A
C
+
m
A
C
N
A
C
=
M
B
C
+
m
B
C
N
B
C
{\displaystyle \mathbf {M_{AB}} +m_{AB}\mathbf {N_{AB}} =\mathbf {M_{AC}} +m_{AC}\mathbf {N_{AC}} =\mathbf {M_{BC}} +m_{BC}\mathbf {N_{BC}} }
Solving for mAB , mAC and mBC
|
m
A
B
m
A
C
m
B
C
|
=
(
H
T
H
)
−
1
H
T
g
{\displaystyle {\begin{vmatrix}m_{AB}\\m_{AC}\\m_{BC}\\\end{vmatrix}}=(H^{T}H)^{-1}H^{T}\mathbf {g} }
A spreadsheet command for calculating this is,
PRODUCT(PRODUCT(MINVERSE(PRODUCT(TRANSPOSE H, H)), TRANSPOSE H), g )
An example of a spreadsheet that does complete calculations of this entire problem is given at the External links section at the end of this article.
The the matrix H and the matrix g in this least squares solution[ 2] are,
H
=
|
N
A
B
x
−
N
A
C
x
0
N
A
B
y
−
N
A
C
y
0
N
A
B
z
−
N
A
C
z
0
0
N
A
C
x
−
N
B
C
x
0
N
A
C
y
−
N
B
C
y
0
N
A
C
z
−
N
B
C
z
N
A
B
x
0
−
N
B
C
x
N
A
B
y
0
−
N
B
C
y
N
A
B
z
0
−
N
B
C
z
|
g
=
|
M
A
C
x
−
M
A
B
x
M
A
C
y
−
M
A
B
y
M
A
C
z
−
M
A
B
z
M
B
C
x
−
M
A
C
x
M
B
C
y
−
M
A
C
y
M
B
C
z
−
M
A
C
z
M
B
C
x
−
M
A
B
x
M
B
C
y
−
M
A
B
y
M
B
C
z
−
M
A
B
z
|
{\displaystyle H={\begin{vmatrix}N_{ABx}&-N_{ACx}&0\\N_{ABy}&-N_{ACy}&0\\N_{ABz}&-N_{ACz}&0\\0&N_{ACx}&-N_{BCx}\\0&N_{ACy}&-N_{BCy}\\0&N_{ACz}&-N_{BCz}\\N_{ABx}&0&-N_{BCx}\\N_{ABy}&0&-N_{BCy}\\N_{ABz}&0&-N_{BCz}\end{vmatrix}}\qquad \mathbf {g} ={\begin{vmatrix}M_{ACx}-M_{ABx}\\M_{ACy}-M_{ABy}\\M_{ACz}-M_{ABz}\\M_{BCx}-M_{ACx}\\M_{BCy}-M_{ACy}\\M_{BCz}-M_{ACz}\\M_{BCx}-M_{ABx}\\M_{BCy}-M_{ABy}\\M_{BCz}-M_{ABz}\\\end{vmatrix}}}
Alternatively, solve the system of equations for mAB , mAC and mBC :
N
A
B
x
m
A
B
−
N
A
C
x
m
A
C
=
M
A
C
x
−
M
A
B
x
N
A
C
y
m
A
C
−
N
B
C
y
m
B
C
=
M
B
C
y
−
M
A
C
y
N
A
B
z
m
A
B
−
N
B
C
z
m
B
C
=
M
B
C
z
−
M
A
B
z
{\displaystyle {\begin{aligned}N_{ABx}m_{AB}-N_{ACx}m_{AC}&=M_{ACx}-M_{ABx}\\N_{ACy}m_{AC}-N_{BCy}m_{BC}&=M_{BCy}-M_{ACy}\\N_{ABz}m_{AB}-N_{BCz}m_{BC}&=M_{BCz}-M_{ABz}\\\end{aligned}}}
The unit normal to the plane of ABC is,
N
D
=
A
C
×
A
B
‖
A
C
×
A
B
‖
{\displaystyle \mathbf {N_{D}} ={\dfrac {\mathbf {AC} \times \mathbf {AB} }{\left\Vert {\mathbf {AC} \times \mathbf {AB} }\right\|}}}
Solution
D
=
{
M
A
B
+
m
A
B
N
A
B
+
(
M
A
B
D
)
2
−
m
A
B
2
N
D
M
A
C
+
m
A
C
N
A
C
+
(
M
A
C
D
)
2
−
m
A
C
2
N
D
M
B
C
+
m
B
C
N
B
C
+
(
M
B
C
D
)
2
−
m
B
C
2
N
D
{\displaystyle \mathbf {D} ={\begin{cases}\mathbf {M_{AB}} +m_{AB}\mathbf {N_{AB}} +{\sqrt {(M_{AB}D)^{2}-m_{AB}^{2}}}\mathbf {N_{D}} \\\mathbf {M_{AC}} +m_{AC}\mathbf {N_{AC}} +{\sqrt {(M_{AC}D)^{2}-m_{AC}^{2}}}\mathbf {N_{D}} \\\mathbf {M_{BC}} +m_{BC}\mathbf {N_{BC}} +{\sqrt {(M_{BC}D)^{2}-m_{BC}^{2}}}\mathbf {N_{D}} \end{cases}}}
D
′
=
{
M
A
B
+
m
A
B
N
A
B
−
(
M
A
B
D
)
2
−
m
A
B
2
N
D
M
A
C
+
m
A
C
N
A
C
−
(
M
A
C
D
)
2
−
m
A
C
2
N
D
M
B
C
+
m
B
C
N
B
C
−
(
M
B
C
D
)
2
−
m
B
C
2
N
D
{\displaystyle \mathbf {D'} ={\begin{cases}\mathbf {M_{AB}} +m_{AB}\mathbf {N_{AB}} -{\sqrt {(M_{AB}D)^{2}-m_{AB}^{2}}}\mathbf {N_{D}} \\\mathbf {M_{AC}} +m_{AC}\mathbf {N_{AC}} -{\sqrt {(M_{AC}D)^{2}-m_{AC}^{2}}}\mathbf {N_{D}} \\\mathbf {M_{BC}} +m_{BC}\mathbf {N_{BC}} -{\sqrt {(M_{BC}D)^{2}-m_{BC}^{2}}}\mathbf {N_{D}} \end{cases}}}
where
M
A
B
D
=
A
D
1
−
[
(
A
D
)
2
+
(
A
B
)
2
−
(
B
D
)
2
(
A
B
)
(
A
D
)
]
2
{\displaystyle M_{AB}D=AD{\sqrt {1-\left[{\dfrac {(AD)^{2}+(AB)^{2}-(BD)^{2}}{(AB)(AD)}}\right]^{2}}}}
M
A
C
D
=
A
D
1
−
[
(
A
D
)
2
+
(
A
C
)
2
−
(
B
D
)
2
(
A
C
)
(
A
D
)
]
2
{\displaystyle M_{AC}D=AD{\sqrt {1-\left[{\dfrac {(AD)^{2}+(AC)^{2}-(BD)^{2}}{(AC)(AD)}}\right]^{2}}}}
M
B
C
D
=
B
D
1
−
[
(
B
D
)
2
+
(
B
C
)
2
−
(
C
D
)
2
(
B
C
)
(
B
D
)
]
2
{\displaystyle M_{BC}D=BD{\sqrt {1-\left[{\dfrac {(BD)^{2}+(BC)^{2}-(CD)^{2}}{(BC)(BD)}}\right]^{2}}}}
A
=
(
x
A
,
y
A
,
z
A
)
{\displaystyle \mathbf {A} =(x_{A},y_{A},z_{A})}
B
=
(
x
B
,
y
B
,
z
B
)
{\displaystyle \mathbf {B} =(x_{B},y_{B},z_{B})}
C
=
(
x
C
,
y
C
,
z
C
)
{\displaystyle \mathbf {C} =(x_{C},y_{C},z_{C})}
A
B
=
(
x
B
−
x
A
,
y
B
−
y
A
,
z
B
−
z
A
)
{\displaystyle \mathbf {AB} =(x_{B}-x_{A},y_{B}-y_{A},z_{B}-z_{A})}
A
C
=
(
x
C
−
x
A
,
y
C
−
y
A
,
z
C
−
z
A
)
{\displaystyle \mathbf {AC} =(x_{C}-x_{A},y_{C}-y_{A},z_{C}-z_{A})}
B
C
=
(
x
C
−
x
B
,
y
C
−
y
B
,
z
C
−
z
B
)
{\displaystyle \mathbf {BC} =(x_{C}-x_{B},y_{C}-y_{B},z_{C}-z_{B})}
A
C
∙
A
B
=
(
x
C
−
x
A
)
(
x
B
−
x
A
)
+
(
y
C
−
y
A
)
(
y
B
−
y
A
)
+
(
z
C
−
z
A
)
(
z
B
−
z
A
)
{\displaystyle \mathbf {AC} \bullet \mathbf {AB} =(x_{C}-x_{A})(x_{B}-x_{A})+(y_{C}-y_{A})(y_{B}-y_{A})+(z_{C}-z_{A})(z_{B}-z_{A})}
A
B
∙
A
C
=
(
x
C
−
x
A
)
(
x
B
−
x
A
)
+
(
y
C
−
y
A
)
(
y
B
−
y
A
)
+
(
z
C
−
z
A
)
(
z
B
−
z
A
)
{\displaystyle \mathbf {AB} \bullet \mathbf {AC} =(x_{C}-x_{A})(x_{B}-x_{A})+(y_{C}-y_{A})(y_{B}-y_{A})+(z_{C}-z_{A})(z_{B}-z_{A})}
A
B
∙
B
C
=
(
x
B
−
x
A
)
(
x
C
−
x
B
)
+
(
y
B
−
y
A
)
(
y
C
−
y
B
)
+
(
z
B
−
z
A
)
(
z
C
−
z
B
)
{\displaystyle \mathbf {AB} \bullet \mathbf {BC} =(x_{B}-x_{A})(x_{C}-x_{B})+(y_{B}-y_{A})(y_{C}-y_{B})+(z_{B}-z_{A})(z_{C}-z_{B})}
A
B
=
(
x
B
−
x
A
)
2
+
(
y
B
−
y
A
)
2
+
(
z
B
−
z
A
)
2
{\displaystyle AB={\sqrt {(x_{B}-x_{A})^{2}+(y_{B}-y_{A})^{2}+(z_{B}-z_{A})^{2}}}}
A
C
=
(
x
C
−
x
A
)
2
+
(
y
C
−
y
A
)
2
+
(
z
C
−
z
A
)
2
{\displaystyle AC={\sqrt {(x_{C}-x_{A})^{2}+(y_{C}-y_{A})^{2}+(z_{C}-z_{A})^{2}}}}
B
C
=
(
x
C
−
x
B
)
2
+
(
y
C
−
y
B
)
2
+
(
z
C
−
z
B
)
2
{\displaystyle BC={\sqrt {(x_{C}-x_{B})^{2}+(y_{C}-y_{B})^{2}+(z_{C}-z_{B})^{2}}}}
‖
A
C
−
A
C
∙
A
B
(
A
B
)
2
A
B
‖
=
(
A
C
)
2
−
(
A
C
∙
A
B
)
2
(
A
B
)
2
{\displaystyle \left\Vert {\mathbf {AC} -{\cfrac {\mathbf {AC} \bullet \mathbf {AB} }{(AB)^{2}}}\mathbf {AB} }\right\|={\sqrt {(AC)^{2}-{\cfrac {(\mathbf {AC} \bullet \mathbf {AB} )^{2}}{(AB)^{2}}}}}}
‖
A
B
−
A
B
∙
A
C
(
A
C
)
2
A
C
‖
=
(
A
B
)
2
−
(
A
B
∙
A
C
)
2
(
A
C
)
2
{\displaystyle \left\Vert {\mathbf {AB} -{\cfrac {\mathbf {AB} \bullet \mathbf {AC} }{(AC)^{2}}}\mathbf {AC} }\right\|={\sqrt {(AB)^{2}-{\cfrac {(\mathbf {AB} \bullet \mathbf {AC} )^{2}}{(AC)^{2}}}}}}
‖
A
B
−
A
B
∙
B
C
(
B
C
)
2
B
C
‖
=
(
A
B
)
2
−
(
A
B
∙
B
C
)
2
(
B
C
)
2
{\displaystyle \left\Vert {\mathbf {AB} -{\cfrac {\mathbf {AB} \bullet \mathbf {BC} }{(BC)^{2}}}\mathbf {BC} }\right\|={\sqrt {(AB)^{2}-{\cfrac {(\mathbf {AB} \bullet \mathbf {BC} )^{2}}{(BC)^{2}}}}}}
M
A
B
x
=
x
A
+
[
(
A
D
)
2
+
(
A
B
)
2
−
(
B
D
)
2
2
(
A
B
)
2
]
(
x
B
−
x
A
)
{\displaystyle {M_{ABx}}={x_{A}}+\left[{\dfrac {(AD)^{2}+(AB)^{2}-(BD)^{2}}{2(AB)^{2}}}\right](x_{B}-x_{A})}
M
A
B
y
=
y
A
+
[
(
A
D
)
2
+
(
A
B
)
2
−
(
B
D
)
2
2
(
A
B
)
2
]
(
y
B
−
y
A
)
{\displaystyle {M_{ABy}}={y_{A}}+\left[{\dfrac {(AD)^{2}+(AB)^{2}-(BD)^{2}}{2(AB)^{2}}}\right](y_{B}-y_{A})}
M
A
B
z
=
z
A
+
[
(
A
D
)
2
+
(
A
B
)
2
−
(
B
D
)
2
2
(
A
B
)
2
]
(
z
B
−
z
A
)
{\displaystyle {M_{ABz}}={z_{A}}+\left[{\dfrac {(AD)^{2}+(AB)^{2}-(BD)^{2}}{2(AB)^{2}}}\right](z_{B}-z_{A})}
M
A
C
x
=
x
A
+
[
(
A
D
)
2
+
(
A
C
)
2
−
(
C
D
)
2
2
(
A
C
)
2
]
(
x
C
−
x
A
)
{\displaystyle {M_{ACx}}={x_{A}}+\left[{\dfrac {(AD)^{2}+(AC)^{2}-(CD)^{2}}{2(AC)^{2}}}\right](x_{C}-x_{A})}
M
A
C
y
=
y
A
+
[
(
A
D
)
2
+
(
A
C
)
2
−
(
C
D
)
2
2
(
A
C
)
2
]
(
y
C
−
y
A
)
{\displaystyle {M_{ACy}}={y_{A}}+\left[{\dfrac {(AD)^{2}+(AC)^{2}-(CD)^{2}}{2(AC)^{2}}}\right](y_{C}-y_{A})}
M
A
C
z
=
z
A
+
[
(
A
D
)
2
+
(
A
C
)
2
−
(
C
D
)
2
2
(
A
C
)
2
]
(
z
C
−
z
A
)
{\displaystyle {M_{ACz}}={z_{A}}+\left[{\dfrac {(AD)^{2}+(AC)^{2}-(CD)^{2}}{2(AC)^{2}}}\right](z_{C}-z_{A})}
M
B
C
x
=
x
B
+
[
(
B
D
)
2
+
(
B
C
)
2
−
(
C
D
)
2
2
(
B
C
)
2
]
(
x
C
−
x
B
)
{\displaystyle {M_{BCx}}={x_{B}}+\left[{\dfrac {(BD)^{2}+(BC)^{2}-(CD)^{2}}{2(BC)^{2}}}\right](x_{C}-x_{B})}
M
B
C
y
=
y
B
+
[
(
B
D
)
2
+
(
B
C
)
2
−
(
C
D
)
2
2
(
B
C
)
2
]
(
y
C
−
y
B
)
{\displaystyle {M_{BCy}}={y_{B}}+\left[{\dfrac {(BD)^{2}+(BC)^{2}-(CD)^{2}}{2(BC)^{2}}}\right](y_{C}-y_{B})}
M
B
C
z
=
z
B
+
[
(
B
D
)
2
+
(
B
C
)
2
−
(
C
D
)
2
2
(
B
C
)
2
]
(
z
C
−
z
B
)
{\displaystyle {M_{BCz}}={z_{B}}+\left[{\dfrac {(BD)^{2}+(BC)^{2}-(CD)^{2}}{2(BC)^{2}}}\right](z_{C}-z_{B})}
N
A
B
x
=
(
x
C
−
x
A
)
−
A
C
∙
A
B
(
A
B
)
2
(
x
B
−
x
A
)
(
A
C
)
2
−
(
A
C
∙
A
B
)
2
(
A
B
)
2
{\displaystyle {N_{ABx}}={\cfrac {{(x_{C}-x_{A})}-{\cfrac {\mathbf {AC} \bullet \mathbf {AB} }{(AB)^{2}}}(x_{B}-x_{A})}{\sqrt {(AC)^{2}-{\cfrac {(\mathbf {AC} \bullet \mathbf {AB} )^{2}}{(AB)^{2}}}}}}}
N
A
B
y
=
(
y
C
−
y
A
)
−
A
C
∙
A
B
(
A
B
)
2
(
y
B
−
y
A
)
(
A
C
)
2
−
(
A
C
∙
A
B
)
2
(
A
B
)
2
{\displaystyle {N_{ABy}}={\cfrac {{(y_{C}-y_{A})}-{\cfrac {\mathbf {AC} \bullet \mathbf {AB} }{(AB)^{2}}}(y_{B}-y_{A})}{\sqrt {(AC)^{2}-{\cfrac {(\mathbf {AC} \bullet \mathbf {AB} )^{2}}{(AB)^{2}}}}}}}
N
A
B
z
=
(
z
C
−
z
A
)
−
A
C
∙
A
B
(
A
B
)
2
(
z
B
−
z
A
)
(
A
C
)
2
−
(
A
C
∙
A
B
)
2
(
A
B
)
2
{\displaystyle {N_{ABz}}={\cfrac {{(z_{C}-z_{A})}-{\cfrac {\mathbf {AC} \bullet \mathbf {AB} }{(AB)^{2}}}(z_{B}-z_{A})}{\sqrt {(AC)^{2}-{\cfrac {(\mathbf {AC} \bullet \mathbf {AB} )^{2}}{(AB)^{2}}}}}}}
N
A
C
x
=
(
x
B
−
x
A
)
−
A
B
∙
A
C
(
A
C
)
2
(
x
C
−
x
A
)
(
A
B
)
2
−
(
A
B
∙
A
C
)
2
(
A
C
)
2
{\displaystyle {N_{ACx}}={\cfrac {{(x_{B}-x_{A})}-{\cfrac {\mathbf {AB} \bullet \mathbf {AC} }{(AC)^{2}}}(x_{C}-x_{A})}{\sqrt {(AB)^{2}-{\cfrac {(\mathbf {AB} \bullet \mathbf {AC} )^{2}}{(AC)^{2}}}}}}}
N
A
C
y
=
(
y
B
−
y
A
)
−
A
B
∙
A
C
(
A
C
)
2
(
y
C
−
y
A
)
(
A
B
)
2
−
(
A
B
∙
A
C
)
2
(
A
C
)
2
{\displaystyle {N_{ACy}}={\cfrac {{(y_{B}-y_{A})}-{\cfrac {\mathbf {AB} \bullet \mathbf {AC} }{(AC)^{2}}}(y_{C}-y_{A})}{\sqrt {(AB)^{2}-{\cfrac {(\mathbf {AB} \bullet \mathbf {AC} )^{2}}{(AC)^{2}}}}}}}
N
A
C
z
=
(
z
B
−
z
A
)
−
A
B
∙
A
C
(
A
C
)
2
(
z
C
−
z
A
)
(
A
B
)
2
−
(
A
B
∙
A
C
)
2
(
A
C
)
2
{\displaystyle {N_{ACz}}={\cfrac {{(z_{B}-z_{A})}-{\cfrac {\mathbf {AB} \bullet \mathbf {AC} }{(AC)^{2}}}(z_{C}-z_{A})}{\sqrt {(AB)^{2}-{\cfrac {(\mathbf {AB} \bullet \mathbf {AC} )^{2}}{(AC)^{2}}}}}}}
N
B
C
x
=
(
x
B
−
x
A
)
−
A
B
∙
B
C
(
B
C
)
2
(
x
C
−
x
B
)
(
A
B
)
2
−
(
A
B
∙
B
C
)
2
(
B
C
)
2
{\displaystyle {N_{BCx}}={\cfrac {{(x_{B}-x_{A})}-{\cfrac {\mathbf {AB} \bullet \mathbf {BC} }{(BC)^{2}}}(x_{C}-x_{B})}{\sqrt {(AB)^{2}-{\cfrac {(\mathbf {AB} \bullet \mathbf {BC} )^{2}}{(BC)^{2}}}}}}}
N
B
C
y
=
(
y
B
−
y
A
)
−
A
B
∙
B
C
(
B
C
)
2
(
y
C
−
y
B
)
(
A
B
)
2
−
(
A
B
∙
B
C
)
2
(
B
C
)
2
{\displaystyle {N_{BCy}}={\cfrac {{(y_{B}-y_{A})}-{\cfrac {\mathbf {AB} \bullet \mathbf {BC} }{(BC)^{2}}}(y_{C}-y_{B})}{\sqrt {(AB)^{2}-{\cfrac {(\mathbf {AB} \bullet \mathbf {BC} )^{2}}{(BC)^{2}}}}}}}
N
B
C
z
=
(
z
B
−
z
A
)
−
A
B
∙
B
C
(
B
C
)
2
(
z
C
−
z
B
)
(
A
B
)
2
−
(
A
B
∙
B
C
)
2
(
B
C
)
2
{\displaystyle {N_{BCz}}={\cfrac {{(z_{B}-z_{A})}-{\cfrac {\mathbf {AB} \bullet \mathbf {BC} }{(BC)^{2}}}(z_{C}-z_{B})}{\sqrt {(AB)^{2}-{\cfrac {(\mathbf {AB} \bullet \mathbf {BC} )^{2}}{(BC)^{2}}}}}}}
The equation of the line of the axis of symmetery of 3 spheres is,
x
−
(
M
A
B
x
+
m
A
B
N
A
B
x
)
(
y
C
−
y
A
)
(
z
B
−
z
A
)
−
(
y
B
−
y
A
)
(
z
C
−
z
A
)
=
y
−
(
M
A
B
y
+
m
A
B
N
A
B
y
)
(
x
B
−
x
A
)
(
z
C
−
z
A
)
−
(
x
C
−
x
A
)
(
z
B
−
z
A
)
=
z
−
(
M
A
B
z
+
m
A
B
N
A
B
z
)
(
x
C
−
x
A
)
(
y
B
−
y
A
)
−
(
x
B
−
x
A
)
(
y
C
−
y
A
)
{\displaystyle {\cfrac {x-(M_{ABx}+m_{AB}N_{ABx})}{(y_{C}-y_{A})(z_{B}-z_{A})-(y_{B}-y_{A})(z_{C}-z_{A})}}={\cfrac {y-(M_{ABy}+m_{AB}N_{ABy})}{(x_{B}-x_{A})(z_{C}-z_{A})-(x_{C}-x_{A})(z_{B}-z_{A})}}={\cfrac {z-(M_{ABz}+m_{AB}N_{ABz})}{(x_{C}-x_{A})(y_{B}-y_{A})-(x_{B}-x_{A})(y_{C}-y_{A})}}}
A
C
×
A
B
=
|
i
j
k
x
C
−
x
A
y
C
−
y
A
z
C
−
z
A
x
B
−
x
A
y
B
−
y
A
z
B
−
z
A
|
{\displaystyle \mathbf {AC} \times \mathbf {AB} ={\begin{vmatrix}\mathbf {i} &\mathbf {j} &\mathbf {k} \\x_{C}-x_{A}&y_{C}-y_{A}&z_{C}-z_{A}\\x_{B}-x_{A}&y_{B}-y_{A}&z_{B}-z_{A}\\\end{vmatrix}}}
=
(
(
y
C
−
y
A
)
(
z
B
−
z
A
)
−
(
y
B
−
y
A
)
(
z
C
−
z
A
)
,
(
x
B
−
x
A
)
(
z
C
−
z
A
)
−
(
x
C
−
x
A
)
(
z
B
−
z
A
)
,
(
x
C
−
x
A
)
(
y
B
−
y
A
)
−
(
x
B
−
x
A
)
(
y
C
−
y
A
)
)
{\displaystyle ={\Big (}(y_{C}-y_{A})(z_{B}-z_{A})-(y_{B}-y_{A})(z_{C}-z_{A}),\ (x_{B}-x_{A})(z_{C}-z_{A})-(x_{C}-x_{A})(z_{B}-z_{A}),\ (x_{C}-x_{A})(y_{B}-y_{A})-(x_{B}-x_{A})(y_{C}-y_{A}){\Big )}}
‖
A
C
×
A
B
‖
=
{
(
(
y
C
−
y
A
)
(
z
B
−
z
A
)
−
(
y
B
−
y
A
)
(
z
C
−
z
A
)
)
2
+
(
(
x
B
−
x
A
)
(
z
C
−
z
A
)
−
(
x
C
−
x
A
)
(
z
B
−
z
A
)
)
2
+
(
(
x
C
−
x
A
)
(
y
B
−
y
A
)
−
(
x
B
−
x
A
)
(
y
C
−
y
A
)
)
2
}
1
2
{\displaystyle \left\Vert {\mathbf {AC} \times \mathbf {AB} }\right\|={\begin{Bmatrix}{\Big (}(y_{C}-y_{A})(z_{B}-z_{A})-(y_{B}-y_{A})(z_{C}-z_{A}){\Big )}^{2}+\\{\Big (}(x_{B}-x_{A})(z_{C}-z_{A})-(x_{C}-x_{A})(z_{B}-z_{A}){\Big )}^{2}+\\{\Big (}(x_{C}-x_{A})(y_{B}-y_{A})-(x_{B}-x_{A})(y_{C}-y_{A}){\Big )}^{2}\end{Bmatrix}}^{\frac {1}{2}}}
Discussion
While the same result can be obtained using only a few of these many equations, all possibilities are treated here. If the three spheres do not intersect, the least squares solution finds the axis of symmetry of the three spheres, or the closest solution. If the three spheres do intersect, the solution requires only a few of these equations.
See also
References
^ Borisenko, A. I. and Tarapov, I. E., (1968) "Vector and Tensor Analysis", General Publishing Company, p. 6. ISBN 0-486-63833-2
^ Leon, Steven J. (1980) "Linear Algebra", Macmillan Publishing Co., Inc., p. 152. ISBN 0-02-369870-5
External links