Triangulation in three dimensions

This is an old revision of this page, as edited by Windmill4408 (talk | contribs) at 00:09, 22 May 2011. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In vector analysis, triangulation is a method of finding points in three dimensional spaces using distances, angles and vector functions such as magnitude, dot product and cross product. Among its uses are in surveying, navigation, and astronomy.

This article describes a method for determining the coordinates of the point where three lines meet, given the scalar lengths of the lines and the coordinates of their bases. If these three lines are the radii of three spheres of known centers, this method can be used to calculate the intersection of the three spheres if they intersect. In the event that the three spheres don't intersect, this method obtains the closest solution to the axis of symmetry between three spheres.


Development

Three sticks of known lengths AD, BD, CD are anchored in the ground at known coordinates A, B, C. This development calculates the coordinates of the apex where the other ends of the three sticks will meet. These coordinates are given by the vector D. In the mirror case, D' is sub-apex where the three sticks would meet below the plane of A, B, C as well.
File:Triangulation illust 02.gif
By the law of cosines,

 
 
 


The projection[1] of AD onto AB and AC, and the projection of BD onto BC results in, File:FacesABD ACD BCD 2.gif

 
 
 



The three unit normals to AB, AC and BC in the plane of ABC are:
 

 


 


 


Then the three vectors intersect at a common point:

 



Solving for mAB, mAC and mBC

 


Spreadsheet formula

A spreadsheet command for calculating this is,

PRODUCT(PRODUCT(MINVERSE(PRODUCT(TRANSPOSE H, H)), TRANSPOSE H), g)

An example of a spreadsheet that does complete calculations of this entire problem is given at the External links section at the end of this article.

The the matrix H and the matrix g in this least squares solution[2] are,

 


Alternatively, solve the system of equations for mAB, mAC and mBC:

 

The unit normal to the plane of ABC is,

 


Solution


 



 



where

 
 
 


Decoding vector formulas

 
 
 


 
 
 


 
 
 


 
 
 


 


 


 


 
 
 


 
 
 


 
 
 


 
 
 


 
 
 


 
 
 


 
 
 


 
 
 


The equation of the line of the axis of symmetery of 3 spheres is,

 


 


 


 


Example

File:Example 00 triang 02.gif

See also

References

  1. ^ Borisenko, A. I. and Tarapov, I. E., (1968) "Vector and Tensor Analysis", General Publishing Company, p. 6. ISBN 0-486-63833-2
  2. ^ Leon, Steven J. (1980) "Linear Algebra", Macmillan Publishing Co., Inc., p. 152. ISBN 0-02-369870-5