Talk:Cantor's first set theory article/Archive 1
Is it really true that most mathematicians believe that the diagonal proof was Cantor's first proof of uncountability? I'm no mathematician, but even my topical interest in the matter turned up that fact long before this article was created. Is the misconception really that prevalent? -- Cyan 20:51, 3 Nov 2003 (UTC)
I haven't carefully polled mathematicians to ascertain this, but I keep finding it asserted in print, and I've spoken with a number of intelligent mathematicians who were under that impression. Michael Hardy 19:53, 4 Nov 2003 (UTC)
I would not have been certain if the diagonal proof was the first one, but my guess (if I would have to bet) would have been that it was, as this is the proof that is most known and famous, so in this sense, I think it's a misconception. Also, mathematicians are pretty sloppy historians (see Fermat number re: Gauss n-gon construction) so it's best to assume we don't know what we're doing, I think. Revolver
- I've looked up Cantor's 1874 paper in Journal für die Reine und Angewandta Mathematik, and the argument given in that article is indeed the one given here. See also Joseph Dauben's book about Cantor. This was indeed his first proof of this result. Michael Hardy 22:17, 12 Jan 2004 (UTC)