A huge wealth of various data exists in software lifecycle, including source code, feature specifications, bug reports, test cases, execution traces/logs, and real-world user feedback, etc. Data plays an essential role in modern software development, because hidden in the data is information and insight about the quality of software and services, the experience of software users, as well as the dynamics of software development.
Software Analytics is to utilize the data-driven approach to enable software practitioners to perform data exploration and analysis in order to obtain insightful and actionable information for various tasks around software systems, software users, and software development process.
Insightful information is information that conveys meaningful and useful understanding or knowledge towards performing the target task. Typically insightful information is not easily attainable by directly investigating the raw data without aid of analytic technologies. Actionable information is information upon which software practitioners can come up with concrete solutions (better than existing solutions if any) towards completing the target task.
Software Analytics broadly focuses on trinity of software systems, software users, and software development process:
Software Systems. Depending on scale and complexity, the spectrum of software systems can span from operating systems for devices to large networked systems that consist of thousands of servers. System quality such as reliability, performance and security, is the key to success of modern software systems. As the system scale and complexity greatly increase, larger amount of data, e.g., run-time traces and logs, is generated; and data has become a critical media to monitor, analyze, understand and improve system quality.
Software Users. Users are (almost) always right because ultimately they pay for the software and services in various ways. Therefore, it is important to continuously create the best user experience. Usage data collected from the real world reveals how users interact with software and services. The data is incredibly valuable for software practitioners to better understand their customers and gain insights on how to improve user experience accordingly.
Software Development Process. Software development has evolved from its traditional form to exhibit different characteristics. The process is more agile and engineers are more collaborative. Analytics on software development data provides a powerful mechanism that we can leverage in order to achieve higher development productivity.
In general, the primary technologies employed by Software Analytics include analytical technologies such as machine learning, data mining and pattern recognition, information visualization, as well as large-scale data computing & processing.
History
In May 2009, Software Analytics was first coined and proposed when Dr. Dongmei Zhang founded the Software Analytics Group (SA) at Microsoft Research Asia (MSRA). The term has become well known in the software engineering research community after a series of tutorials and talks on software analytics were given by Dr. Dongmei Zhang, in collaboration with Professor Tao Xie from North Carolina State University, at software engineering conferences including a tutorial at IEEE/ACM International Conference on Automated Software Engineering (ASE 2011), a tutorial and a keynote talk given by Dr. Dongmei Zhang at IEEE-CS Conference on Software Engineering Education and Training (CSEE&T 2012), a tutorial at International Conference on Software Engineering (ICSE 2012) - Software Engineering in Practice Track, and a keynote talk given by Dr. Dongmei Zhang at the 9th Working Conference on Mining Software Repositories (MSR 2012).
In November 2010, Software Development Analytics (Software Analytics with focus on Software Development) was proposed by Thomas Zimmermann and colleagues at the Empirical Software Engineering Group (ESE) at Microsoft Research Redmond in their FoSER 2010 paper. A goldfish bowl panel on software development analytics was organized by Thomas Zimmermann and Tim Menzies from West Virginia University at the 34th International Conference on Software Engineering (ICSE 2012), Software Engineering in Practice track.
See also
References
- Raymond P. L. Buse and Thomas Zimmermann. "Analytics for Software Development." In Proceedings of the Workshop on Future of Software Engineering Research (FoSER 2010) Santa Fe, NM, USA, November 2010, pp. 77-80. PDF
- Kenneth Hullett, Nachiappan Nagappan, Eric Schuh, and John Hopson, "Data Analytics for Game Development (NIER Track)". In Proceedings of the International Conference on Software Engineering, May 2011, pp. 940-943. PDF
- Dongmei Zhang, Yingnong Dang, Jian-Guang Lou, Shi Han, Haidong Zhang, and Tao Xie. "Software Analytics as a Learning Case in Practice: Approaches and Experiences". In Proceedings of International Workshop on Machine Learning Technologies in Software Engineering (MALETS 2011), Lawrence, Kansas, November 2011. PDFSlides
- Dongmei Zhang and Tao Xie. "xSA: eXtreme Software Analytics - Marriage of eXtreme Computing and Software Analytics." In Proceedings of the 26th IEEE/ACM International Conference on Automated Software Engineering (ASE 2011), Tutorial, Lawrence, Kansas, November 2011.
- Dongmei Zhang, Yingnong Dang, Shi Han, and Tao Xie. "Teaching and Training for Software Analytics." In Proceedings of the 24th IEEE-CS Conference on Software Engineering Education and Training (CSEE&T 2012), Tutorial, Nanjing, China, April 2012.
- Dongmei Zhang and Tao Xie. "Software Analytics in Practice: Mini Tutorial." In Proceedings of the 34th International Conference on Software Engineering (ICSE 2012), Software Engineering in Practice, Mini Tutorial, Zurich, Switzerland, June 2012, pp. 997. Slides
- Tim Menzies and Thomas Zimmermann. "Goldfish Bowl Panel: Software Development Analytics." In Proceedings of the 34th International Conference on Software Engineering (ICSE 2012), Software Engineering in Practice, Zurich, Switzerland, June 2012, pp. 1032-1033.
- Raymond P. L. Buse and Thomas Zimmermann. "Information Needs for Software Development Analytics." In Proceedings of the 34th International Conference on Software Engineering (ICSE 2012), Software Engineering in Practice, Zurich, Switzerland, June 2012, pp. 987-996. PDF
External links
- Microsoft Research Asia Software Analytics Group (SA)
- Microsoft Research Redmond Empirical Software Engineering Group (ESE)
- Software Analytics as a Learning Case in Practice – Approaches and Experiences, Keynote by Dongmei Zhang at the 9th Working Conference on Mining Software Repositories (MSR 2012)
- Software Analytics in Practice – Approaches and Experiences, Keynote slides by Dongmei Zhang at the 9th Working Conference on Mining Software Repositories (MSR 2012)
- Software Analytics in Practice, Mini-tutorial slides by Dongmei Zhang and Tao Xie at the 34th International Conference on Software Engineering (ICSE 2012)
- Software Analytics Portal
- Software Analytics Pinterest