Random testing

This is an old revision of this page, as edited by Dekart (talk | contribs) at 20:02, 16 June 2013 (See also). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Random testing is a black-box software testing technique where programs are tested by generating random inputs. Results of the output are compared against software specifications to verify that the test output is pass or fail. In case of absence of specifications the exceptions of the language are used which means if an exception arises during test execution then it means there is a fault in the program.

Overview

Consider the following C++ function:

int myAbs(int x) {
    if (x>0) { 
        return x;
    }
    else {
        return x; // bug: should be '-x'
    }
}

Now the random tests for this function could be {123, 36, -35, 48, 0}. Only the value '-35' triggers the bug. If there is no reference implementation to check the result, the bug still could be noticed. However, an assertion could be added to check the results, like:

void testAbs(int n) {
    for (int i=0; i<n; i++) {
        int x = getRandomInput();
        int result = myAbs(x);
        assert(result>=0);
    }
}

The reference implementation is sometimes available, e.g. when implementing a simple algorithm in a much more complex way for better performance. For example, to test implementation of Schönhage–Strassen algorithm algorithm, standard "*" operation on integers can be used:

int getRandomInput() {
    . . .
}

void testFastMultiplication(int n) {
    for (int i=0; i<n; i++) {
        long x = getRandomInput();
        long y = getRandomInput();
        long result = fastMultiplication(x, y);
        assert(x*y==result);
    }
}


Types of random testing

With respect to the input

  • Random input sequence generation (i.e. a sequence of method calls)
  • Random sequence of data inputs (sometimes called stochastic testing) - f.ex. a random sequence of method calls
  • Random data selection from existing database

Guided vs. unguided

  • undirected random test generation - with no heuristics to guide its search
  • directed random test generation - f.ex. "feedback-directed random test generation"[1]

Implementations

Some tools implementing random testing:

  • QuickCheck - a famous test tool, originally developed for Haskell but ported to many other languages, that generates random sequences of API calls based on a model and verifies system properties that should hold true after each run. Check this QuviQ QuickCheck flyer for a quick overview.
  • Randoop - generates sequences of methods and constructor invocations for the classes under test and creates JUnit tests from these
  • Simulant - a Clojure tool that runs simulations of various agents (f.ex. users with different behavioral profiles) based on a statistical model of their behavior, recording all the actions and results into a database for later exploration and verification

See also

References

  1. ^ Pacheco, Carlos (2007). "Feedback-directed random test generation" (PDF). ICSE '07: Proceedings of the 29th International Conference on Software Engineering. IEEE Computer Society: 75–84. ISSN 0270-5257. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)