This article or section is in a state of significant expansion or restructuring. You are welcome to assist in its construction by editing it as well. If this article or section has not been edited in several days, please remove this template. If you are the editor who added this template and you are actively editing, please be sure to replace this template with {{in use}} during the active editing session. Click on the link for template parameters to use.
This redirect was last edited by FizykLJF (talk | contribs) 11 years ago. (Update timer) |
In statistics, covariance mapping is an extension of the covariance concept from random variables to random functions. Normal covariance is a scalar (a single number) that measures statistical relation between two random variables. Covariance maps are matrices (arrays of numbers) that show statistical relations between different regions of random functions. Statistically independent regions of the functions show up on the map as zero-level flatland, while positive or negative correlations show up, respectively, as hills or valleys.
Application to data analysis
Covariance mapping can be applied to any repetitive, fluctuating signal to reveal information hidden in the fluctuations. This technique was first used to analyse mass spectra of molecules ionised and fragmented by intense laser pulses.[1]
Covariance mapping is particularly well suited to free-electron laser (FEL) research, where the x-ray intensity is so high that the large number of photoelectron and photoions produced at each pulse overwhelms simpler coincidence techniques. Figure 1 shows a typical experiment[2]. X-ray pulses are focused on neon atoms and ionize them. The kinetic energy spectra of the photoelectrons ejected from neon are recorded at each laser shot using a suitable spectrometer (here a time-of-flight spectrometer). The single-shot spectra are sent to a computer, which calculates and displays the covariance map.
Figure 1: Schematics of a covariance mapping experiment. The experiment was performed at the LCLS FEL at Stanford University. [2]
The need to correlate photoelectrons
Even in a relatively simple system, such as neon atom, intense x-rays induce a plethora of ionization processes (see Fig. 2). As the kinetic energies of the electrons ejected in different processes largely overlap, it is impossible to identify these processes using simple photoelectron spectrometry. To do so, one needs to correlate the kinetic energies of the electrons ejected in a given process. Covariance mapping is a method of revealing such correlations.
Figure 2: Examples of ionization processes in neon induced by intense x-ray photons of 1062 eV energy. When a photon is absorbed, it may eject a photoelectron from the atom core (P) or from its valence shell (PV). An Auger process fills any core hole ejecting an Auger electron (A). A core photoelectron on its way out may also kick out an additional valence electron giving double electron ejection (DKV) by a single photon. The x-ray intensity so high that several photons can be absorbed by a single atom producing a large variety of ionization sequences.
The principle
Consider a random function , where index labels a particular instance of the function and is the independent variable. In the context of the FEL experiment, is a digitized electron energy spectrum produced by laser shot . As the electron energy takes a range of discrete values , the spectra can be regarded as row vectors of experimental data:
- .
The simplest way to analyse the data is to average the spectra over laser shots:
- .
Such spectra show kinetic energies of individual electrons but the correlations between the electrons are lost in the process of averaging. To reveal the correlations we need to calculate the covariance map:
- ,
where vector is the transpose of vector and the angular brackets denote averaging over many laser shots as before. Note that the ordering of the vectors (a column followed by a row) ensures that their multiplication gives a matrix. It is convenient to display the matrix as a false-colour map.
How to read the map
The covariance map obtained in the FEL experiment[2] is shown in Fig. 3. Along the x and y axes the averaged spectra and are shown. These spectra are resolved on the map into pairwise correlations between energies of electrons produces in the same process. For example, if the process is the first process depicted in Fig. 2 (PP), then two low-energy electrons are ejected from the Ne core giving a positive island in the bottom-left corner of the map (one of the white ones). The island is positive because if one of the electrons is detected, there is higher than average probability of detecting also the other electron and the covariance of the signals at the two energies takes a positive value.
The volumes of the islands are directly proportional to the relative probabilities of the processes.
... 1D vs 2D, impurities ... Poisson -> branching ratios
Figure 3: A covariance map revealing correlations between electrons emitted from neon (and from some N2 and water vapour contamination). The map is constructed shot by shot from electron energy spectra, which are shown along the x and y axes after averaging over 480 000 FEL shots. Volumes of the features on the map give relative probabilities of various ionization sequences. (Note that the colour scale is non-linear to accommodate a large dynamic range of the map.) [2]
Negative correlations
... others' research
Partial covariance mapping
... N2 pcov stages [3]
Three-dimensional covariance mapping
... scan N2O pictures
See also
References
- ^ L J Frasinski, K Codling and P A Hatherly "Covariance Mapping: A Correlation Method Applied to Multiphoton Multiple Ionisation" Science 246 1029–1031 (1989)
- ^ a b c d L J Frasinski, V Zhaunerchyk, M Mucke, R J Squibb, M Siano, J H D Eland, P Linusson, P v.d. Meulen, P Salén, R D Thomas, M Larsson, L Foucar, J Ullrich, K Motomura, S Mondal, K Ueda, T Osipov, L Fang, B F Murphy, N Berrah, C Bostedt, J D Bozek, S Schorb, M Messerschmidt, J M Glownia, J P Cryan, R Coffee, O Takahashi, S Wada, M N Piancastelli, R Richter, K C Prince, and R Feifel "Dynamics of Hollow Atom Formation in Intense X-ray Pulses Probed by Partial Covariance Mapping" Phys. Rev. Lett. 111 073002 (2013), open access
- ^ O Kornilov, M Eckstein, M Rosenblatt, C P Schulz, K Motomura, A Rouzée, J Klei, L Foucar, M Siano, A Lübcke, F. Schapper, P Johnsson, D M P Holland, T Schlatholter, T Marchenko, S Düsterer, K Ueda, M J J Vrakking and L J Frasinski "Coulomb explosion of diatomic molecules in intense XUV fields mapped by partial covariance" J. Phys. B: At. Mol. Opt. Phys. 46 164028 (2013), open access