In case F is of the form
F
(
n
)
=
∑
d
|
n
f
(
n
)
,
{\displaystyle F(n)=\sum _{d\mathop {|} n}f(n),}
for some arithmetic function f(n) , one has,
∑
n
≤
x
F
(
n
)
=
∑
d
≤
x
f
(
d
)
∑
n
≤
x
,
d
|
x
1
=
∑
f
≤
d
f
(
d
)
[
x
/
d
]
=
x
∑
d
≤
x
f
(
d
)
d
+
O
(
∑
d
≤
x
|
f
(
d
)
|
)
.
(
1
)
{\displaystyle \sum _{n\leq x}F(n)=\sum _{d\leq x}f(d)\sum _{n\leq x,d|x}1=\sum _{f\leq d}f(d)[x/d]=x\sum _{d\leq x}{\frac {f(d)}{d}}{\text{ }}+O(\sum _{d\leq x}|f(d)|).\qquad \qquad (1)}
This identity often provides a practical way to calculate the mean value in terms of the Riemann zeta function . This is illustrated in the following example.
The density of the k-th power free integers in N
For an integer k ≥1 the set Qk of k -th-power-free integers is
Q
k
:=
{
n
∈
Z
|
n
is not divisible by
d
k
for any integer
d
≥
2
}
{\displaystyle Q_{k}:=\{n\in \mathbb {Z} |\;n{\text{ is not divisible by }}d^{k}{\text{ for any integer }}d\geq 2\}}
.
We calculate the natural density of these numbers in N , that is, the average value of 1Qk , denoted by δ(n) , in terms of the zeta function .
The function δ is multiplicative, and since it is bounded by 1, its Dirichlet series converges absolutely in the half-plane Re(s)>1, and there has Euler product
∑
Q
k
n
−
s
=
∑
n
δ
(
n
)
n
−
s
=
∏
p
(
1
+
p
−
s
+
⋯
+
p
−
s
(
k
−
1
)
=
∏
p
(
1
−
p
−
s
k
1
−
p
−
s
)
=
ζ
(
s
)
ζ
(
s
k
)
{\displaystyle \sum _{Q_{k}}n^{-s}=\sum _{n}\delta (n)n^{-s}=\prod _{p}(1+p^{-s}+\cdots +p^{-s(k-1)}=\prod _{p}\left({\frac {1-p^{-sk}}{1-p^{-s}}}\right)={\frac {\zeta (s)}{\zeta (sk)}}}
.
By the Möbius inversion formula, we get
1
ζ
(
k
s
)
=
∑
n
μ
(
n
)
n
−
k
s
,
{\displaystyle {\frac {1}{\zeta (ks)}}=\sum _{n}\mu (n)n^{-ks},}
where
μ
{\displaystyle \mu }
stands for the Möbius function . Equivalently,
1
ζ
(
k
s
)
=
∑
n
f
(
n
)
n
−
s
,
{\displaystyle {\frac {1}{\zeta (ks)}}=\sum _{n}f(n)n^{-s},}
where
f
(
n
)
=
{
μ
(
d
)
n
=
d
k
0
otherwise
,
{\displaystyle f(n)={\begin{cases}\;\;\,\mu (d)&n=d^{k}\\\;\;\,0&{\text{otherwise}},\end{cases}}}
and hence,
ζ
(
s
)
ζ
(
s
k
)
=
∑
n
(
∑
d
|
n
f
(
d
)
)
n
−
s
{\displaystyle {\frac {\zeta (s)}{\zeta (sk)}}=\sum _{n}(\sum _{d|n}f(d))n^{-s}}
.
By comparing the coefficients, we get
δ
(
n
)
=
∑
d
|
n
f
(
d
)
n
−
s
{\displaystyle \delta (n)=\sum _{d|n}f(d)n^{-s}}
.
Using (1), we get
∑
d
≤
x
δ
(
d
)
=
x
∑
d
≤
x
(
f
(
d
)
/
d
)
+
O
(
x
1
/
k
)
{\displaystyle \sum _{d\leq x}\delta (d)=x\sum _{d\leq x}(f(d)/d)+O(x^{1/k})}
.
We conclude that,
∑
n
∈
Q
k
,
n
≤
x
1
=
x
ζ
(
k
)
+
O
(
x
1
/
k
)
{\displaystyle \sum _{n\in Q_{k},n\leq x}1={\frac {x}{\zeta (k)}}+O(x^{1/k})}
,
Where for this we used the relation
∑
n
(
f
(
n
)
/
n
)
=
∑
n
f
(
n
k
)
n
−
k
=
∑
n
μ
(
n
)
n
−
k
=
1
ζ
(
k
)
{\displaystyle \sum _{n}(f(n)/n)=\sum _{n}f(n^{k})n^{-k}=\sum _{n}\mu (n)n^{-k}={\frac {1}{\zeta (k)}}}
,
which follows from the Möbius inversion formula.
In particular, the density of the square-free integers is
ζ
(
2
)
−
1
=
6
π
2
{\displaystyle \zeta (2)^{-1}={\frac {6}{\pi ^{2}}}}
.
An average order of d (n ), the number of divisors of n , is log(n );
An average order of σ(n ), the sum of divisors of n , is n π2 / 6;
An average order of φ(n ), Euler's totient function of n , is 6n / π2 ;
An average order of r (n ), the number of ways of expressing n as a sum of two squares, is πn
The average order of representations of a natural number as a sum of three squares is 4πn/3
The average number of decompositions of a natural number into a sum of one or more consecutive prime numbers is nlog2 .
Visibility of lattice points
We say that two lattice points are visible from one another if there is no lattice point on the open line segment joining them.
Now, if gcd(a, b)=d>1 , then writing a=da’ , b=db’ one observes that the point
(a’, b’) is on the line segment which joins (0,0) to (a, b) and hence (a, b) is not visible from the origin. Thus (a, b) is visible from the origin implies that (a, b)=1 . Conversely, it is also easy to see that gcd(a, b)=1 implies that there is no other integer lattice point in the segment joining (0,0) to (a, b) .
Thus, (a, b) is visible from (0,0) if and only if gcd(a, b)=1.
Notice that
φ
(
n
)
n
{\displaystyle {\frac {\varphi (n)}{n}}}
is the probability of a random point on the square
{
(
r
,
s
)
∈
N
:
max
(
|
r
|
,
|
s
|
)
=
n
}
{\displaystyle \{(r,s)\in \mathbb {N} :\max(|r|,|s|)=n\}}
to be visible from the origin.
Thus, one can show that the natural density of the points which are visible from the origin is given by the average,
lim
N
→
∞
1
N
∑
n
≤
N
φ
(
n
)
n
=
6
π
2
=
1
ζ
(
2
)
{\displaystyle \lim _{N\rightarrow \infty }{\frac {1}{N}}\sum _{n\leq N}{\frac {\varphi (n)}{n}}={\frac {6}{\pi ^{2}}}={\frac {1}{\zeta (2)}}}
.
interestingly,
1
ζ
(
2
)
{\displaystyle {\frac {1}{\zeta (2)}}}
is also the natural density of the square-free numbers in N . In fact, this is not a coincidence. Consider the k -dimensional lattice,
Z
k
{\displaystyle \mathbb {Z} ^{k}}
. The natural density of the points which are visible from the origin is
1
ζ
(
k
)
{\displaystyle {\frac {1}{\zeta (k)}}}
, which is also the natural density of the k -th free integers in N .
Divisor functions
Consider the generalization of
d
(
n
)
{\displaystyle d(n)}
:
σ
α
(
n
)
=
∑
d
|
n
d
α
{\displaystyle \sigma _{\alpha }(n)=\sum _{d|n}d^{\alpha }}
.
The following are true:
∑
n
≤
x
σ
α
(
n
)
=
{
∑
n
≤
x
σ
α
(
n
)
=
ζ
(
α
+
1
)
α
+
1
x
α
+
1
+
O
(
x
β
)
if
α
is positive
∑
n
≤
x
σ
−
1
(
n
)
=
ζ
(
2
)
x
+
O
(
l
o
g
x
)
if
α
=
−
1
∑
n
≤
x
σ
α
(
n
)
=
ζ
(
−
α
+
1
)
x
+
O
(
x
m
a
x
(
0
,
1
+
α
)
)
otherwise
{\displaystyle \sum _{n\leq x}\sigma _{\alpha }(n)={\begin{cases}\;\;\sum _{n\leq x}\sigma _{\alpha }(n)={\frac {\zeta (\alpha +1)}{\alpha +1}}x^{\alpha +1}+O(x^{\beta }){\mbox{if }}\alpha {\mbox{ is positive}}\\\;\;\sum _{n\leq x}\sigma _{-1}(n)=\zeta (2)x+O(logx){\mbox{if }}\alpha =-1\\\;\;\sum _{n\leq x}\sigma _{\alpha }(n)=\zeta (-\alpha +1)x+O(x^{max(0,1+\alpha )}){\mbox{otherwise }}\end{cases}}}
where
β
=
m
a
x
(
1
,
α
)
{\displaystyle \beta =max(1,\alpha )}
.
Definition
Let h(x) be a function on the set of monic polynomials over Fq . For
n
≥
1
{\displaystyle n\geq 1}
we define
Ave
n
(
h
)
=
1
q
n
∑
f
monic
,
deg
(
f
)
=
n
h
(
f
)
{\displaystyle {\text{Ave}}_{n}(h)={\frac {1}{q^{n}}}\sum _{f{\text{ monic}},{\text{ deg}}(f)=n}h(f)}
.
This is the mean value of h on the set of monic polynomials of degree n . We define the mean value of h to be
lim
n
→
∞
Ave
n
(
h
)
{\displaystyle \lim _{n\rightarrow \infty }{\text{Ave}}_{n}(h)}
provided this limit exists.
Zeta function and Dirichlet series in F q [X]
Let Fq [X] =A be the ring of polynomials over the finite field Fq .
Let h be a polynomial arithmetic function (i.e. a function on set of monic polynomials over A ). Its corresponding Dirichlet series define to be
D
h
(
s
)
=
∑
f
monic
h
(
f
)
|
f
|
−
s
{\displaystyle D_{h}(s)=\sum _{f{\text{ monic}}}h(f)|f|^{-s}}
,
where for
g
∈
A
{\displaystyle g\in A}
, set
|
g
|
=
q
d
e
g
(
g
)
{\displaystyle |g|=q^{deg(g)}}
if
g
≠
0
{\displaystyle g\neq 0}
, and
|
g
|
=
0
{\displaystyle |g|=0}
otherwise.
The polynomial zeta function is then
ζ
A
(
s
)
=
∑
f
monic
|
f
|
−
s
{\displaystyle \zeta _{A}(s)=\sum _{f{\text{ monic}}}|f|^{-s}}
.
Similar to the situation in N , every Dirichlet series of a multiplicative function h has a product representation (Euler product ):
D
h
(
s
)
=
∏
P
(
∑
n
=
0
∞
h
(
P
n
)
|
P
|
−
s
n
)
{\displaystyle D_{h}(s)=\prod _{P}(\sum _{n\mathop {=} 0}^{\infty }h(P^{n})|P|^{-sn})}
,
Where the product runs over all monic irreducible polynomials P .
For example, the product representation of zeta function still holds:
ζ
A
(
s
)
=
∏
P
(
1
−
|
P
|
−
s
)
−
1
{\displaystyle \zeta _{A}(s)=\prod _{P}(1-|P|^{-s})^{-1}}
.
Unlike the classical zeta function ,
ζ
A
(
s
)
{\displaystyle \zeta _{A}(s)}
is very simple:
ζ
A
(
s
)
=
∑
f
(
|
f
|
−
s
)
=
∑
n
∑
deg(f)=n
q
−
s
n
=
∑
n
(
q
n
−
s
n
)
=
(
1
−
q
1
−
s
)
−
1
{\displaystyle \zeta _{A}(s)=\sum _{f}(|f|^{-s})=\sum _{n}\sum _{\text{deg(f)=n}}q^{-sn}=\sum _{n}(q^{n-sn})=(1-q^{1-s})^{-1}}
.
In a similar way, If ƒ and g are two polynomial arithmetic functions, one defines ƒ * g , the Dirichlet convolution of ƒ and g , by
(
f
∗
g
)
(
m
)
=
∑
d
∣
m
f
(
m
)
g
(
m
d
)
=
∑
a
b
=
f
f
(
a
)
g
(
b
)
{\displaystyle {\begin{aligned}(f*g)(m)&=\sum _{d\,\mid \,m}f(m)g\left({\frac {m}{d}}\right)\\&=\sum _{ab\,=\,f}f(a)g(b)\end{aligned}}}
where the sum extends over all monic divisors d of m , or equivalently over all pairs (a , b ) of monic polynomials whose product is m .
The identity
D
h
D
g
=
D
h
∗
g
{\displaystyle D_{h}D_{g}=D_{h*g}}
still holds. Thus, like in the elementary theory, the polynomial Dirichlet series and the zeta function has a connection with the notion of mean values in the context of polynomials. The following examples illustrate it.
The density of the k-th power free polynomials in F q [X]
Define
δ
(
f
)
{\displaystyle \delta (f)}
to be 1 if
f
{\displaystyle f}
is k-th power free and 0 otherwise.
We calculate the average value of δ, which is the density of the k-th power free polynomials in F q [X] .
By multiplicativity of
δ
{\displaystyle \delta }
:
∑
f
δ
(
f
)
|
f
|
s
=
∏
P
(
∑
j
=
0
k
−
1
(
|
P
|
−
j
s
)
)
=
∏
P
1
−
|
P
|
−
s
k
1
−
|
P
|
−
s
=
ζ
A
(
s
)
ζ
A
(
s
k
)
=
1
−
q
1
−
k
s
1
−
q
1
−
s
{\displaystyle \sum _{f}{\frac {\delta (f)}{|f|^{s}}}=\prod _{P}(\sum _{j\mathop {=} 0}^{k-1}(|P|^{-js}))=\prod _{P}{\frac {1-|P|^{-sk}}{1-|P|^{-s}}}={\frac {\zeta _{A}(s)}{\zeta _{A}(sk)}}={\frac {1-q^{1-ks}}{1-q^{1-s}}}}
Denote
b
n
{\displaystyle b_{n}}
the number of k-th power monic polynomials of degree n , we get
∑
f
δ
(
f
)
|
f
|
s
=
∑
n
∑
def
f
=
n
δ
(
f
)
|
f
|
−
s
=
∑
n
b
n
q
−
s
n
{\displaystyle \sum _{f}{\frac {\delta (f)}{|f|^{s}}}=\sum _{n}\sum _{{\text{def}}f=n}\delta (f)|f|^{-s}=\sum _{n}b_{n}q^{-sn}}
.
Making substitution
u
=
q
−
s
{\displaystyle u=q^{-s}}
we get:
1
−
q
u
k
1
−
q
u
=
∑
n
=
0
∞
b
n
u
n
{\displaystyle {\frac {1-qu^{k}}{1-qu}}=\sum _{n\mathop {=} 0}^{\infty }b_{n}u^{n}}
.
Finally, expand the left-hand side in a geometric series and compare the coefficients on
u
n
{\displaystyle u^{n}}
on both sides, we get that
b
n
=
{
q
n
n
≤
k
−
1
q
n
(
1
−
q
1
−
k
)
otherwise
{\displaystyle b_{n}={\begin{cases}\;\;\,q^{n}&n\leq k-1\\\;\;\,q^{n}(1-q^{1-k})&{\text{otherwise}}\\\end{cases}}}
Hence,
Ave
n
(
δ
)
=
1
−
q
1
−
k
=
1
ζ
A
(
k
)
{\displaystyle {\text{Ave}}_{n}(\delta )=1-q^{1-k}={\frac {1}{\zeta _{A}(k)}}}
And since it doesn't depend on n this is also the mean value of
δ
(
f
)
{\displaystyle \delta (f)}
.
Examples
Polynomial Divisor function
At Fq [X] , we define
σ
k
(
m
)
=
∑
f
|
m
, f monic
|
f
|
k
{\displaystyle \sigma _{k}(m)=\sum _{f|m{\text{, f monic}}}|f|^{k}}
.
We will compute
Ave
n
(
σ
k
)
{\displaystyle {\text{Ave}}_{n}(\sigma _{k})}
for
k
≥
1
{\displaystyle k\geq 1}
.
First, notice that:
σ
k
(
m
)
=
h
∗
I
(
m
)
{\displaystyle \sigma _{k}(m)=h*\mathbb {I} (m)}
where
h
(
f
)
=
|
f
|
k
{\displaystyle h(f)=|f|^{k}}
and
I
(
f
)
=
1
∀
f
{\displaystyle \;\mathbb {I} (f)=1\;\;\forall {f}}
.
Therefore,
∑
m
σ
k
(
m
)
|
m
|
−
s
=
ζ
A
(
s
)
∑
m
h
(
m
)
|
m
|
−
s
{\displaystyle \sum _{m}\sigma _{k}(m)|m|^{-s}=\zeta _{A}(s)\sum _{m}h(m)|m|^{-s}}
.
Substitute
q
−
s
=
u
{\displaystyle q^{-s}=u}
we get,
LHS
=
∑
n
(
∑
deg
m
=
n
)
u
n
{\displaystyle {\text{LHS}}=\sum _{n}(\sum _{{\text{deg}}m=n})u^{n}}
, and by Cauchy product we get,
RHS
=
∑
n
(
q
n
(
1
−
q
k
(
n
+
1
)
1
−
q
k
)
)
u
n
{\displaystyle {\text{RHS}}=\sum _{n}(q^{n}({\frac {1-q^{k(n+1)}}{1-q^{k}}}))u^{n}}
.
Finally we get that,
Ave
n
σ
k
=
1
−
q
k
(
n
+
1
)
1
−
q
k
{\displaystyle {\text{Ave}}_{n}\sigma _{k}={\frac {1-q^{k(n+1)}}{1-q^{k}}}}
.
Number of divisors
Let
d
(
f
)
{\displaystyle d(f)}
be the number of monic divisors of f and let
D
(
n
)
{\displaystyle D(n)}
be the sum of
d
(
f
)
{\displaystyle d(f)}
over all monics of degree n.
ζ
A
(
s
)
2
=
(
∑
h
|
h
|
−
s
)
(
∑
g
|
g
|
−
s
)
=
∑
f
(
∑
h
g
=
f
1
)
|
f
|
−
s
=
∑
d
(
f
)
|
f
|
−
s
=
D
d
(
s
)
=
∑
n
=
0
∞
D
(
n
)
u
n
{\displaystyle \zeta _{A}(s)^{2}=(\sum _{h}|h|^{-s})(\sum _{g}|g|^{-s})=\sum _{f}(\sum _{hg=f}1)|f|^{-s}=\sum _{d(f)}|f|^{-s}=D_{d}(s)=\sum _{n\mathop {=} 0}^{\infty }D(n)u^{n}}
where
u
=
q
−
s
{\displaystyle u=q^{-s}}
.
Expanding the right-hand side into power series we get,
D
(
n
)
=
(
n
+
1
)
q
n
{\displaystyle D(n)=(n+1)q^{n}}
.
Substitute
x
=
q
n
{\displaystyle x=q^{n}}
the above equation becomes:
D
(
n
)
=
x
l
o
g
q
(
x
)
+
x
{\displaystyle D(n)=xlog_{q}(x)+x}
which resembles closely the analogous result for integers
∑
k
=
1
n
d
(
k
)
=
x
l
o
g
x
+
(
2
γ
−
1
)
x
+
O
(
x
)
{\displaystyle \sum _{k\mathop {=} 1}^{n}d(k)=xlogx+(2\gamma -1)x+O({\sqrt {x}})}
, where
γ
{\displaystyle \gamma }
is Euler constant . It is a famous problem in elementary number theory to find the error term. In the polynomials case, there is no error term. This is because of the very simple nature of the zeta function
ζ
A
(
s
)
{\displaystyle \zeta _{A}(s)}
.
Polynomial von Mangoldt function function
The Polynomial von Mangoldt function is defined by:
Λ
A
(
f
)
=
{
log
|
P
|
if
f
=
|
P
|
k
for some prime monic
P
and integer
k
≥
1
,
0
otherwise.
{\displaystyle \Lambda _{A}(f)={\begin{cases}\log |P|&{\mbox{if }}f=|P|^{k}{\text{ for some prime monic}}P{\text{ and integer }}k\geq 1,\\0&{\mbox{otherwise.}}\end{cases}}}
Proposition.
Λ
A
{\displaystyle \Lambda _{A}}
has mean value
l
o
g
(
q
)
{\displaystyle log(q)}
.
Proof.
First, notice that,
∑
f
|
m
Λ
A
(
f
)
=
l
o
g
|
m
|
{\displaystyle \sum _{f|m}\Lambda _{A}(f)=log|m|}
.
Hence,
ζ
A
∗
Λ
A
(
m
)
=
l
o
g
|
m
|
{\displaystyle \zeta _{A}*\Lambda _{A}(m)=log|m|}
and we get that,
ζ
A
(
s
)
D
Λ
A
(
s
)
=
∑
m
l
o
g
|
m
|
|
m
|
−
s
{\displaystyle \zeta _{A}(s)D_{\Lambda _{A}}(s)=\sum _{m}log|m||m|^{-s}}
. Now,
∑
m
|
m
|
s
=
∑
n
∑
deg
m
=
n
u
n
=
∑
n
q
n
u
n
=
∑
n
q
n
(
1
−
s
)
{\displaystyle \sum _{m}|m|^{s}=\sum _{n}\sum _{{\text{deg}}m=n}u^{n}=\sum _{n}q^{n}u^{n}=\sum _{n}q^{n(1-s)}}
.
Thus,
d
d
s
∑
m
|
m
|
s
=
−
∑
n
l
o
g
(
q
n
)
q
n
(
1
−
s
)
=
−
∑
n
∑
d
e
g
(
f
)
=
n
l
o
g
(
q
n
)
q
−
n
s
=
−
∑
f
l
o
g
|
f
|
|
f
|
−
s
{\displaystyle {\frac {d}{ds}}\sum _{m}|m|^{s}=-\sum _{n}log(q^{n})q^{n(1-s)}=-\sum _{n}\sum _{deg(f)=n}log(q^{n})q^{-ns}=-\sum _{f}log|f||f|^{-s}}
.
We got that:
D
Λ
A
(
s
)
=
−
ζ
A
′
(
s
)
ζ
A
(
s
)
{\displaystyle D_{\Lambda _{A}}(s)={\frac {-\zeta '_{A}(s)}{\zeta _{A}(s)}}}
Now,
∑
m
Λ
A
(
m
)
|
m
|
−
s
=
∑
n
(
∑
d
e
g
(
m
)
=
n
Λ
A
(
m
)
q
−
s
m
)
=
∑
n
(
∑
d
e
g
(
m
)
=
n
Λ
A
(
m
)
)
u
n
=
−
ζ
A
′
(
s
)
ζ
A
(
s
)
=
q
1
−
s
l
o
g
(
q
)
1
−
q
1
−
s
=
l
o
g
(
q
)
∑
n
=
1
∞
q
n
u
n
{\displaystyle \sum _{m}\Lambda _{A}(m)|m|^{-s}=\sum _{n}(\sum _{deg(m)=n}\Lambda _{A}(m)q^{-sm})=\sum _{n}(\sum _{deg(m)=n}\Lambda _{A}(m))u^{n}={\frac {-\zeta '_{A}(s)}{\zeta _{A}(s)}}={\frac {q^{1-s}log(q)}{1-q^{1-s}}}=log(q)\sum _{n\mathop {=} 1}^{\infty }q^{n}u^{n}}
Hence,
∑
d
e
g
(
m
)
=
n
Λ
A
(
m
)
=
q
n
l
o
g
(
q
)
{\displaystyle \sum _{deg(m)=n}\Lambda _{A}(m)=q^{n}log(q)}
, and by dividing by
q
n
{\displaystyle q^{n}}
we get that,
A
v
e
n
Λ
A
(
m
)
=
l
o
g
(
q
)
{\displaystyle Ave_{n}\Lambda _{A}(m)=log(q)}
.
Define Euler totient function polynomial analogue,
Φ
{\displaystyle \Phi }
, to be the number of elements in the group
(
A
/
f
A
)
∗
{\displaystyle (A/fA)^{*}}
. We have,
∑
deg
f
=
n
,
f
monic
Φ
(
f
)
=
q
2
n
(
1
−
q
−
1
)
{\displaystyle \sum _{{\text{deg}}f=n,f{\text{monic}}}\Phi (f)=q^{2n}(1-q^{-1})}