Timeline of computational mathematics

This is an old revision of this page, as edited by Ema--or (talk | contribs) at 00:09, 21 August 2014 (1950s). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

1940s

  • Monte Carlo simulation (voted one of the top 10 algorithms of the 20th century) invented at Los Alamos by von Neumann, Ulam and Metropolis.[1][2][3]
  • First hydro simulations at Los Alamos occurred.[4][5]
  • Ulam and von Neumann introduce the notion of cellular automata.[6]

1950s

1960s

1970s


1980s

1990s

See also

References

  1. ^ Metropolis, N. (1987). "The Beginning of the Monte Carlo method" (PDF). Los Alamos Science. No. 15, Page 125. {{cite journal}}: |volume= has extra text (help). Accessed 5 may 2012.
  2. ^ S. Ulam, R. D. Richtmyer, and J. von Neumann(1947). Statistical methods in neutron diffusion. Los Alamos Scientific Laboratory report LAMS–551.
  3. ^ N. Metropolis and S. Ulam (1949). The Monte Carlo method. Journal of the American Statistical Association 44:335-341.
  4. ^ Richtmyer, R. D. (1948). Proposed Numerical Method for Calculation of Shocks. Los Alamos, NM: Los Alamos Scientific Laboratory LA-671.
  5. ^ A Method for the Numerical Calculation of Hydrodynamic Shocks. Von Neumann, J.; Richtmyer, R. D. Journal of Applied Physics, Vol. 21, p.232-237
  6. ^ Von Neumann, J., Theory of Self-Reproduiing Automata, Univ. of Illinois Press, Urbana, 1966.
  7. ^ Magnus R. Hestenes and Eduard Stiefel, Methods of Conjugate Gradients for Solving Linear Systems, J. Res. Natl. Bur. Stand. 49, 409–436 (1952).
  8. ^ Eduard Stiefel,U¨ ber einige Methoden der Relaxationsrechnung (in German), Z. Angew. Math. Phys. 3, 1–33 (1952).
  9. ^ Cornelius Lanczos, Solution of Systems of Linear Equations by Minimized Iterations, J. Res. Natl. Bur. Stand. 49, 33–53 (1952).
  10. ^ Cornelius Lanczos, An Iteration Method for the Solution of the Eigenvalue Problem of Linear Differential and Integral Operators, J. Res. Natl. Bur. Stand. 45, 255–282 (1950).
  11. ^ Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. (1953). "Equations of State Calculations by Fast Computing Machines". Journal of Chemical Physics. 21 (6): 1087–1092. Bibcode:1953JChPh..21.1087M. doi:10.1063/1.1699114.
  12. ^ Unfortunately, Alder's thesis advisor was unimpressed, so Alder and Frankel delayed publication of their results until much later. Alder, B. J. , Frankel, S. P. , and Lewinson, B. A. , J. Chem. Phys., 23, 3 (1955).
  13. ^ http://www.hp9825.com/html/stan_frankel.html
  14. ^ Fermi, E. (posthumously); Pasta, J.; Ulam, S. (1955) : Studies of Nonlinear Problems (accessed 25 Sep 2012). Los Alamos Laboratory Document LA-1940. Also appeared in 'Collected Works of Enrico Fermi', E. Segre ed. , University of Chicago Press, Vol.II,978–988,1965. Recovered 21 Dec 2012
  15. ^ Alder, B. J.; T. E. Wainwright (1959). "Studies in Molecular Dynamics. I. General Method". J. Chem. Phys. 31 (2): 459. Bibcode 1959JChPh..31..459A. doi:10.1063/1.1730376
  16. ^ Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. (1953): Equations of State Calculations by Fast Computing Machines (Retrieved 3 May 2012). Journal of Chemical Physics 21 (6): 1087–1092. Bibcode 1953JChPh..21.1087M. doi:10.1063/1.1699114.
  17. ^ Householder, A. S. (1958). "Unitary Triangularization of a Nonsymmetric Matrix". Journal of the ACM. 5 (4): 339–342. doi:10.1145/320941.320947. MR 0111128.
  18. ^ J.G.F. Francis, "The QR Transformation, I", The Computer Journal, vol. 4, no. 3, pages 265-271 (1961, received Oct 1959) online at oxfordjournals.org;
    J.G.F. Francis, "The QR Transformation, II" The Computer Journal, vol. 4, no. 4, pages 332-345 (1962) online at oxfordjournals.org.
  19. ^ Vera N. Kublanovskaya (1961), "On some algorithms for the solution of the complete eigenvalue problem," USSR Computational Mathematics and Mathematical Physics, 1(3), pages 637–657 (1963, received Feb 1961). Also published in: Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki [Journal of Computational Mathematics and Mathematical Physics], 1(4), pages 555–570 (1961).
  20. ^ RW Clough, “The Finite Element Method in Plane Stress Analysis,” Proceedings of 2nd ASCE Conference on Electronic Computation, Pittsburgh, PA, Sept. 8, 9, 1960.
  21. ^ Minovitch, Michael: "A method for determining interplanetary free-fall reconnaissance trajectories," Jet Propulsion Laboratory Technical Memo TM-312-130, pages 38-44 (23 August 1961).
  22. ^ Christopher Riley and Dallas Campbell, Oct 22, 2012. "The maths that made Voyager possible". BBC News Science and Environment. Recovered 16 Jun 2013.
  23. ^ Rahman, A (1964). "Correlations in the Motion of Atoms in Liquid Argon". Phys Rev. 136 (2A): A405 – A41. Bibcode:1964PhRv..136..405R. doi:10.1103/PhysRev.136.A405.
  24. ^ Zabusky, N. J.; Kruskal, M. D. (1965). "Interaction of 'solitons' in a collisionless plasma and the recurrence of initial states". Phys. Rev. Lett. 15 (6): 240–243. Bibcode 1965PhRvL..15..240Z. doi:10.1103/PhysRevLett.15.240.
  25. ^ http://www.merriam-webster.com/dictionary/soliton ; retrieved 3 nov 2012.
  26. ^ Lorenz, Edward N. (1963). "Deterministic Nonperiodic Flow" (PDF). Journal of the Atmospheric Sciences 20 (2): 130–141. 20 (2): 130. Bibcode:1963JAtS...20..130L. doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.
  27. ^ a b Verlet, Loup (1967). "Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard−Jones Molecules". Physical Review. 159: 98–103. Bibcode:1967PhRv..159...98V. doi:10.1103/PhysRev.159.98.
  28. ^ Press, WH; Teukolsky, SA; Vetterling, WT; Flannery, BP (2007). "Section 17.4. Second-Order Conservative Equations". Numerical Recipes: The Art of Scientific Computing (3rd ed.). New York: Cambridge University Press. ISBN 978-0-521-88068-8.
  29. ^ B. Mandelbrot; Les objets fractals, forme, hasard et dimension (in French). Publisher: Flammarion (1975), ISBN 9782082106474; English translation Fractals: Form, Chance and Dimension. Publisher: Freeman, W. H & Company. (1977). ISBN 9780716704737.
  30. ^ Mandelbrot, Benoît B.; (1983). The Fractal Geometry of Nature. San Francisco: W.H. Freeman. ISBN 0-7167-1186-9.
  31. ^ Kenneth Appel and Wolfgang Haken, "Every planar map is four colorable, Part I: Discharging," Illinois Journal of Mathematics 21: 429–490, 1977.
  32. ^ Appel, K. and Haken, W. "Every Planar Map is Four-Colorable, II: Reducibility." Illinois J. Math. 21, 491-567, 1977.
  33. ^ Appel, K. and Haken, W. "The Solution of the Four-Color Map Problem." Sci. Amer. 237, 108-121, 1977.
  34. ^ L. Greengard, The Rapid Evaluation of Potential Fields in Particle Systems, MIT, Cambridge, (1987).
  35. ^ Rokhlin, Vladimir (1985). "Rapid Solution of Integral Equations of Classic Potential Theory." J. Computational Physics Vol. 60, pp. 187-207.
  36. ^ L. Greengard and V. Rokhlin, "A fast algorithm for particle simulations," J. Comput. Phys., 73 (1987), no. 2, pp. 325–348.