In terms of other special functions
Sinhc
(
z
)
=
K
u
m
m
e
r
M
(
1
,
2
,
2
z
)
e
z
{\displaystyle \operatorname {Sinhc} (z)={\frac {{\rm {KummerM}}\left(1,\,2,\,2\,z\right)}{{\rm {e}}^{z}}}}
Sinhc
(
z
)
=
H
e
u
n
B
(
2
,
0
,
0
,
0
,
2
z
)
e
z
{\displaystyle \operatorname {Sinhc} (z)={\frac {{\it {HeunB}}\left(2,0,0,0,{\sqrt {2}}{\sqrt {z}}\right)}{{\rm {e}}^{z}}}}
Sinhc
(
z
)
=
1
/
2
W
h
i
t
t
a
k
e
r
M
(
0
,
1
/
2
,
2
z
)
z
{\displaystyle \operatorname {Sinhc} (z)=1/2\,{\frac {{\rm {WhittakerM}}\left(0,\,1/2,\,2\,z\right)}{z}}}
Series expansion
Sinhc
z
≈
(
1
+
1
3
z
2
+
2
15
z
4
+
17
315
z
6
+
62
2835
z
8
+
1382
155925
z
10
+
21844
6081075
z
12
+
929569
638512875
z
14
+
O
(
z
16
)
)
{\displaystyle \operatorname {Sinhc} z\approx (1+{\frac {1}{3}}{z}^{2}+{\frac {2}{15}}{z}^{4}+{\frac {17}{315}}{z}^{6}+{\frac {62}{2835}}{z}^{8}+{\frac {1382}{155925}}{z}^{10}+{\frac {21844}{6081075}}{z}^{12}+{\frac {929569}{638512875}}{z}^{14}+O\left({z}^{16}\right))}
Gallery
Sinhc abs complex 3D
Sinhc Im complex 3D plot
Sinhc Re complex 3D plot
Sinhc'(z) Im complex 3D plot
Sinhc'(z) Re complex 3D plot
Sinhc'(z) abs complex 3D plot
Sinhc abs plot
Sinhc Im plot
Sinhc Re plot
Sinhc'(z) Im plot
Sinhc'(z) abs plot
Sinhc'(z) Re plot
See also
References
^ JHM ten Thije Boonkkamp, J van Dijk, L Liu,Extension of the complete flux scheme to systems of conservation laws,J Sci Comput (2012) 53:552–568,DOI 10.1007/s10915-012-9588-5
^ Weisstein, Eric W. "Sinhc Function." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/SinhcFunction.html