Ulam and von Neumann introduce the notion of cellular automata.[6]
A routine written to factor a large number (2^18), one of the first in computational number theory.[7] The Manchester group would make several other breakthroughs in this area.[8]
First recorded use of the term "finite element method" by Ray Clough,[21] to describe the methods of Courant, Hrenikoff and Zienkiewicz, among others. See also here.
Frenchman Verlet (re)discovers a numerical integration algorithm,[28] (first used in 1791 by Delambre, by Cowell and Crommelin in 1909, and by Carl Fredrik Störmer in 1907,[29] hence the alternative names Störmer's method or the Verlet-Störmer method) for dynamics, and the Verlet list.[28]
^Magnus R. Hestenes and Eduard Stiefel, Methods of Conjugate Gradients for Solving Linear Systems, J. Res. Natl. Bur. Stand. 49, 409–436 (1952).
^Eduard Stiefel,U¨ ber einige Methoden der Relaxationsrechnung (in German), Z. Angew. Math. Phys. 3, 1–33 (1952).
^Cornelius Lanczos, Solution of Systems of Linear Equations by Minimized Iterations, J. Res. Natl. Bur. Stand. 49, 33–53 (1952).
^Cornelius Lanczos, An Iteration Method for the Solution of the Eigenvalue Problem of Linear Differential and Integral Operators, J. Res. Natl. Bur. Stand. 45, 255–282 (1950).
^Alder, B. J.; T. E. Wainwright (1959). "Studies in Molecular Dynamics. I. General Method". J. Chem. Phys. 31 (2): 459. Bibcode 1959JChPh..31..459A. doi:10.1063/1.1730376
^
J. G. F. Francis, "The QR Transformation, I", The Computer Journal, vol. 4, no. 3, pages 265–271 (1961, received Oct 1959) online at oxfordjournals.org;
J. G. F. Francis, "The QR Transformation, II" The Computer Journal, vol. 4, no. 4, pages 332–345 (1962) online at oxfordjournals.org.
^Vera N. Kublanovskaya (1961), "On some algorithms for the solution of the complete eigenvalue problem," USSR Computational Mathematics and Mathematical Physics, 1(3), pages 637–657 (1963, received Feb 1961). Also published in: Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki [Journal of Computational Mathematics and Mathematical Physics], 1(4), pages 555–570 (1961).
^RW Clough, “The Finite Element Method in Plane
Stress Analysis,” Proceedings of 2nd ASCE Conference on Electronic Computation, Pittsburgh, PA, Sept. 8, 9, 1960.
^Minovitch, Michael: "A method for determining interplanetary free-fall reconnaissance trajectories," Jet Propulsion Laboratory Technical Memo TM-312-130, pages 38-44 (23 August 1961).
^Zabusky, N. J.; Kruskal, M. D. (1965). "Interaction of 'solitons' in a collisionless plasma and the recurrence of initial states". Phys. Rev. Lett. 15 (6): 240–243. Bibcode 1965PhRvL..15..240Z. doi:10.1103/PhysRevLett.15.240.
^B. Mandelbrot; Les objets fractals, forme, hasard et dimension (in French). Publisher: Flammarion (1975), ISBN 9782082106474; English translation Fractals: Form, Chance and Dimension. Publisher: Freeman, W. H & Company. (1977). ISBN 9780716704737.
^Mandelbrot, Benoît B.; (1983). The Fractal Geometry of Nature. San Francisco: W.H. Freeman. ISBN 0-7167-1186-9.
^Kenneth Appel and Wolfgang Haken, "Every planar map is four colorable, Part I: Discharging," Illinois Journal of Mathematics 21: 429–490, 1977.
^Appel, K. and Haken, W. "Every Planar Map is Four-Colorable, II: Reducibility." Illinois J. Math. 21, 491–567, 1977.
^Appel, K. and Haken, W. "The Solution of the Four-Color Map Problem." Sci. Amer. 237, 108–121, 1977.
^L. Greengard, The Rapid Evaluation of Potential Fields in Particle Systems, MIT, Cambridge, (1987).
^Rokhlin, Vladimir (1985). "Rapid Solution of Integral Equations of Classic Potential Theory." J. Computational Physics Vol. 60, pp. 187–207.
^L. Greengard and V. Rokhlin, "A fast algorithm for particle simulations," J. Comput. Phys., 73 (1987), no. 2, pp. 325–348.