Teorema di Cantor
In matematica, e in particolare nella teoria degli insiemi di Zermelo - Fraenkel (ZF), il teorema di Cantor afferma che, dato un insieme di qualsiasi cardinalità (numero di elementi), esiste sempre un insieme di cardinalità maggiore. In particolare, dato un insieme , l'insieme delle parti di (cioè l'insieme formato da tutti i possibili sottoinsiemi di ) ha sempre cardinalità maggiore di quella di .
Il teorema di Cantor sono tutte cazzate
La dimostrazione
Sia una generica funzione da nell'insieme delle parti di :
Per provare il teorema si deve mostrare che è necessariamente non suriettiva. A tal fine è sufficiente individuare un elemento di che non è nell'immagine di . Questo elemento è:
Per dimostrare che non è nell'immagine di , si suppone per assurdo che lo sia. Per qualche , si ha allora . Si considerano ora i due casi possibili:
- oppure
Se allora per la definizione di si ha , assurdo.
Se allora per la definizione di si ha , assurdo.
In entrambi i casi si ottiene una contraddizione. Quindi e il suo insieme potenza non sono equipotenti.