???
At the beginning we let take X ,Y as complex numbers :-
x
=
r
e
i
θ
{\displaystyle x=re^{i\theta }\,}
y
=
k
e
i
φ
=
A
+
B
i
{\displaystyle y=ke^{i\varphi }=A+Bi}
Z
=
q
e
i
ϕ
{\displaystyle Z=qe^{i\phi }\,}
Then :
x
y
=
(
r
e
i
θ
)
(
k
e
i
φ
)
=
e
k
[
(
cos
(
φ
)
ln
(
r
)
+
sin
(
φ
)
θ
)
+
i
(
cos
(
φ
)
θ
−
sin
(
φ
)
ln
(
r
)
)
]
{\displaystyle x^{y}=(re^{i\theta })^{(ke^{i\varphi })}=e^{k[(\cos(\varphi )\ln(r)+\sin(\varphi )\theta )+i(\cos(\varphi )\theta -\sin(\varphi )\ln(r))]}\,}
The Proof
if
x
y
=
z
{\displaystyle x^{y}=z\,}
then x and y are known and we are trying to find z . we change to logarthim form and we get :-
log
z
(
x
)
=
ln
(
x
)
ln
(
z
)
=
y
=
A
+
B
i
{\displaystyle \log _{z}(x)={\ln(x) \over \ln(z)}=y=A+Bi\,}
=
ln
(
r
)
+
i
θ
ln
(
q
)
+
i
ϕ
{\displaystyle ={\ln(r)+i\theta \over \ln(q)+i\phi }\,}
=
(
ln
(
q
)
ln
(
r
)
+
θ
ϕ
)
+
i
(
ϕ
ln
(
r
)
−
θ
ln
(
q
)
)
(
ln
(
r
)
)
2
+
(
θ
)
2
{\displaystyle ={(\ln(q)\ln(r)+\theta \phi )+i(\phi \ln(r)-\theta \ln(q)) \over (\ln(r))^{2}+(\theta )^{2}}}
We going to say that
g
=
(
ln
(
r
)
)
2
+
(
θ
)
2
{\displaystyle g=(\ln(r))^{2}+(\theta )^{2}}
and we continue ...
y
=
(
ln
(
q
)
ln
(
r
)
+
θ
ϕ
)
+
i
(
ϕ
ln
(
r
)
−
θ
ln
(
q
)
)
g
{\displaystyle y={(\ln(q)\ln(r)+\theta \phi )+i(\phi \ln(r)-\theta \ln(q)) \over g}}
=
(
ln
(
q
)
ln
(
r
)
+
θ
ϕ
)
g
+
i
(
ϕ
ln
(
r
)
−
θ
ln
(
q
)
)
g
=
A
+
B
i
{\displaystyle ={(\ln(q)\ln(r)+\theta \phi ) \over g}+i{(\phi \ln(r)-\theta \ln(q)) \over g}=A+Bi}
Then that means .....
ln
(
q
)
ln
(
r
)
+
θ
ϕ
=
A
g
{\displaystyle \ln(q)\ln(r)+\theta \phi =Ag\,}
----> 1
−
θ
ln
(
q
)
+
ϕ
ln
(
r
)
=
B
g
{\displaystyle -\theta \ln(q)+\phi \ln(r)=Bg\,}
------>2
δ
=
[
ln
(
r
)
θ
θ
−
l
n
(
r
)
]
=
−
(
ln
(
r
)
2
−
(
θ
)
2
=
−
g
{\displaystyle \delta ={\begin{bmatrix}\ln(r)&\theta \\\theta &-ln(r)\\\end{bmatrix}}=-(\ln(r)^{2}-(\theta )^{2}=-g}
δ
(
ln
(
q
)
)
=
[
A
g
θ
B
g
−
ln
(
r
)
]
=
−
g
[
−
A
θ
−
B
−
ln
(
r
)
]
=
−
g
[
A
ln
(
r
)
+
B
θ
]
{\displaystyle \delta (\ln(q))={\begin{bmatrix}Ag&\theta \\Bg&-\ln(r)\\\end{bmatrix}}=-g{\begin{bmatrix}-A&\theta \\-B&-\ln(r)\\\end{bmatrix}}=-g[A\ln(r)+B\theta ]\,}
δ
(
θ
)
=
[
ln
(
r
)
A
g
θ
B
g
]
=
−
g
[
ln
(
r
)
−
A
θ
−
B
]
=
−
g
[
−
A
θ
+
B
ln
(
r
)
]
{\displaystyle \delta (\theta )={\begin{bmatrix}\ln(r)&Ag\\\theta &Bg\\\end{bmatrix}}=-g{\begin{bmatrix}\ln(r)&-A\\\theta &-B\\\end{bmatrix}}=-g[-A\theta +B\ln(r)]}
ln
(
q
)
=
δ
(
ln
(
q
)
)
δ
=
A
ln
(
r
)
+
B
θ
{\displaystyle \ln(q)={\delta (\ln(q)) \over \delta }=A\ln(r)+B\theta }
q
=
e
A
ln
(
r
)
+
B
θ
{\displaystyle q=e^{A\ln(r)+B\theta }\,}
θ
=
δ
(
θ
)
δ
=
A
θ
−
ln
(
r
)
B
{\displaystyle \theta ={\delta (\theta ) \over \delta }=A\theta -\ln(r)B}
Then we get....
x
y
=
(
r
e
i
θ
)
(
A
+
b
i
)
=
e
(
A
ln
(
r
)
+
B
θ
)
+
i
(
A
θ
−
B
ln
(
r
)
)
{\displaystyle x^{y}=(re^{i\theta })^{(A+bi)}=e^{(A\ln(r)+B\theta )+i(A\theta -B\ln(r))}\,}
we return y to the poler form by sub
A
=
k
cos
(
φ
)
{\displaystyle A=k\cos(\varphi )}
,
s
u
b
B
=
k
sin
(
φ
)
{\displaystyle subB=k\sin(\varphi )}
. then we get....
x
y
=
(
r
e
i
θ
)
(
k
e
i
φ
)
=
e
k
[
(
cos
(
φ
)
ln
(
r
)
+
sin
(
φ
)
θ
)
+
i
(
cos
(
φ
)
θ
−
sin
(
φ
)
ln
(
r
)
)
]
{\displaystyle x^{y}=(re^{i\theta })^{(ke^{i\varphi })}=e^{k[(\cos(\varphi )\ln(r)+\sin(\varphi )\theta )+i(\cos(\varphi )\theta -\sin(\varphi )\ln(r))]}\,}
Applications
complex number power by real number:
then we use the formula with B=0
x
y
=
(
r
e
i
θ
)
(
A
)
=
e
(
A
ln
(
r
)
+
0
)
+
i
(
A
θ
−
0
)
{\displaystyle x^{y}=(re^{i\theta })^{(A)}=e^{(A\ln(r)+0)+i(A\theta -0)}\,}
=
r
A
e
i
(
A
θ
)
{\displaystyle =r^{A}e^{i(A\theta )}\,}
real number power by complex number
we use the formula with
θ
=
0
{\displaystyle \theta =0}
x
y
=
(
r
)
(
A
+
b
i
)
=
e
(
A
ln
(
r
)
+
0
)
+
i
(
0
−
B
ln
(
r
)
)
{\displaystyle x^{y}=(r)^{(A+bi)}=e^{(A\ln(r)+0)+i(0-B\ln(r))}\,}
=
r
a
e
i
(
−
B
ln
(
r
)
)
{\displaystyle =r^{a}e^{i(-B\ln(r))}\,}