Richter scale

This is an old revision of this page, as edited by 69.223.73.135 (talk) at 07:02, 1 January 2007. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

The Richter magnitude test scale (or more correctly local magnitude ML scale) assigns a single number to quantify the size of an earthquake. It is a base-10 logarithmic scale obtained by calculating the logarithm of the combined horizontal amplitude of the largest displacement from zero on a seismometer output. Measurements have no limits and can be either positive or negative.

Development

Developed in 1935 by Charles Richter in collaboration with Beno Gutenberg, both of the California Institute of Technology, the scale was originally intended to be used only in a particular study area in California, and on seismograms recorded on a particular instrument, the Wood-Anderson torsion seismometer. Richter originally reported values to the nearest quarter of a unit, but decimal numbers were used later. His motivation for creating the local magnitude scale was to separate the vastly larger number of smaller earthquakes from the few larger earthquakes observed in California at the time. His inspiration for the technique was the stellar magnitude scale used in astronomy to describe the brightness of stars and other celestial objects. Richter arbitrarily chose a magnitude 0 event to be an earthquake that would show a maximum combined horizontal displacement of 1 micrometre on a seismogram recorded using a Wood-Anderson torsion seismometer 100 km from the earthquake epicenter. This choice was intended to prevent negative magnitudes from being assigned. However, the Richter scale has no upper or lower limit, and sensitive modern seismographs now routinely record quakes with negative magnitudes.

Because of the limitations of the Wood-Anderson torsion seismometer used to develop the scale, the original ML cannot be calculated for events larger than about 6.8. Many investigators have proposed extensions to the local magnitude scale, the most popular being the surface wave magnitude MS and the body wave magnitude Mb.

Richter magnitudes

Events with magnitudes of about 4.6 or greater are strong enough to be recorded by any seismographs all over the world.

The following describes the typical effects of earthquakes of various magnitudes near the epicenter. This table should be taken with extreme caution, since intensity and thus ground effects depend not only on the magnitude, but also on the distance to the epicenter, and geological conditions (certain terrains can amplify seismic signals).

DescriptionRichter Magnitudes Earthquake Effects Frequency of Occurrence
MicroLess than 2.0 Microearthquakes, not felt. About 8,000 per day
Very minor2.0-2.9 Generally not felt, but recorded. About 1,000 per day
Minor3.0-3.9 Often felt, but rarely causes damage. 49,000 per year (est.)
Light4.0-4.9 Noticeable shaking of indoor items, rattling noises. Significant damage unlikely. 6,200 per year (est.)
Moderate5.0-5.9 Can cause major damage to poorly constructed buildings over small regions. At most slight damage to well-designed buildings. 800 per year
Strong6.0-6.9 Can be destructive in areas up to about 100 miles across in populated areas. 120 per year
Major7.0-7.9 Can cause serious damage over larger areas. 18 per year
Great8.0-8.9 Can cause serious damage in areas several hundred miles across. 1 per year
Rarely, great9.0 or greater Devastating in areas several thousand miles across. 1 per 20 years

(Adapted from U.S. Geological Survey documents.)

Great earthquakes occur once a year, on average. The largest recorded earthquake was the Great Chilean Earthquake of May 22, 1960 which had a magnitude (MW) of 9.5 (Chile 1960).

The following table lists the approximate energy equivalents in terms of TNT explosive force [1].

Richter
Magnitude
Approximate TNT for
Seismic Energy Yield
Example
0.5 5.6 kg (12.4 lb)Hand grenade
1.0 32 kg (70 lb)Construction site blast
1.5 178 kg (392 lb)WWII conventional bombs
2.0 1 metric tonlate WWII conventional bombs
2.5 5.6 metric tonsWWII blockbuster bomb
3.0 32 metric tonsMassive Ordnance Air Blast bomb
3.5 178 metric tonsChernobyl nuclear disaster, 1986
4.0 1 kilotonSmall atomic bomb
4.5 5.6 kilotonsAverage tornado (total energy)
5.0 32 kilotonNagasaki atomic bomb
5.5 178 kilotonsLittle Skull Mtn., NV Quake, 1992
6.0 1 megatonDouble Spring Flat, NV Quake, 1994
6.5 5.6 megatonsNorthridge quake, 1994
~7.0 50 megatonsTsar Bomba, largest thermonuclear weapon ever tested
7.5 178 megatons Landers, CA Quake, 1992
8.0 1 gigaton San Francisco, CA Quake, 1906
8.5 5.6 gigatonsAnchorage, AK Quake, 1964
9.0 32 gigatons2004 Indian Ocean earthquake
10.01 teratonestimate for a 100 km rocky bolide impacting at 25 km/s

Problems with the Richter scale

The major problem with Richter magnitude is that it is not easily related to physical characteristics of the earthquake source. Furthermore, there is a saturation effect near 8.3-8.5, owing to the scaling law of earthquake spectra, that causes traditional magnitude methods (such as MS) to yield the same magnitude estimate for events that are clearly of different size. By the beginning of the 21st century, most seismologists considered the traditional magnitude scales to be largely obsolete, being replaced by a more physically meaningful measurement called the seismic moment which is more directly relatable to the physical parameters, such as the dimension of the earthquake rupture, and the energy released from the earthquake. In 1979 seismologists Tom Hanks and Hiroo Kanamori, also of the California Institute of Technology, proposed the moment magnitude scale (MW), which provides a way of expressing seismic moments in a form that can be approximately related to traditional seismic magnitude measurements.

See also

References

  1. ^ What is Richter Magnitude?, with mathematic equations