Generation_of_OAM_beams_using_SLM.gif (503 × 428 pixel, dimensione del file: 5,6 MB, tipo MIME: image/gif, ciclico, 200 frame, 50 s)
Logo di Commons
Logo di Commons
Questo file e la sua pagina di descrizione (discussione · modifica) si trovano su Wikimedia Commons (?)

Dettagli

Descrizione
English: A light beam with a given orbital angular momentum (OAM) can be generated by letting a standard Gaussian beam impinge on a display of a spatial light modulator (SLM). The phase of the reflected beam is a sum of the original phase and the phase projected onto the SLM. If the phase profile on SLM is flat, the SLM works effectively as a mirror. If the phase has a helical profile, the resulting beam is a Laguerre-Gaussian (LG) beam with a well-defined OAM. The sign as well as the value of OAM can be easily changed by projecting different patterns on the SLM. In real applications, there is a non-negligible admixture in the reflected beam in the form of a Gaussian beam. One can get rid of it by superposing the helical phase on the SLM with a diffraction grating. The resulting pattern, the fork hologram, reflects the LG beam into a different direction than the Gaussian admixture.
Čeština: Světelný paprsek s daným orbitálním momentem hybnosti (OAM) může být generován tak, že se standardní Gaussovský svazek nechá dopadat na displej prostorového modulátoru světla (SLM). Fáze odraženého paprsku je součtem původní fáze a fáze promítnuté na SLM. Je-li fázový profil na SLM plochý, funguje SLM v podstatě jako zrcadlo. Pokud je fáze šroubovicovitá, je odražený paprsek Laguerrův-Gaussův (LG) svazek s dobře definovaným OAM. Znaménko i hodnotu OAM lze snadno změnit promítnutím jiného fázového vzorku na SLM. V reálných aplikacích obsahuje odražený svazek nezanedbatelnou příměs v podobě Gaussovského svazku. Tuto příměs lze odstranit tak, že se na SLM promítne vzorek doplněný o difrakční mřížku. Výsledný vzorek, vidlicovitý hologram, odráží LG svazek do jiného směru než Gaussovskou příměs.
Data
Fonte Opera propria
Autore JozumBjada

Licenza

Io, detentore del copyright su quest'opera, dichiaro di pubblicarla con la seguente licenza:
w:it:Creative Commons
attribuzione condividi allo stesso modo
Tu sei libero:
  • di condividere – di copiare, distribuire e trasmettere quest'opera
  • di modificare – di adattare l'opera
Alle seguenti condizioni:
  • attribuzione – Devi fornire i crediti appropriati, un collegamento alla licenza e indicare se sono state apportate modifiche. Puoi farlo in qualsiasi modo ragionevole, ma non in alcun modo che suggerisca che il licenziante approvi te o il tuo uso.
  • condividi allo stesso modo – Se remixi, trasformi o sviluppi il materiale, devi distribuire i tuoi contributi in base alla stessa licenza o compatibile all'originale.

Source code

This animation was created using Wolfram language 12.0.0 for Microsoft Windows (64-bit) (April 6, 2019). The source code follows (formatted as a .wl package file).

(* ::Package:: *)

(* ::Title:: *)
(*OAM beams created by SLM*)


(* ::Subtitle:: *)
(*Animation demonstrating the generation of orbital angular momentum (OAM) beams using spatial light modulator (SLM)*)


(* ::Chapter::Closed:: *)
(*Auxiliary routines and constants*)


(* ::Input::Initialization:: *)
{pt1,pt2,pt3,pt4}={{-1,-1,0},{0,0,0},{.5,-1.5,0},1.12{1,-1,0}};
{rad,speed,finalStageIdx}={0.2,0.1,16};
arrowFun[pts_,col_:Orange]:={Thickness[0.005],Arrowheads[0.03],col,Arrow[BezierCurve[pts]]}
fadeFun[gr_,t_]:=gr/.{col_:>Blend[{col,White},t]/;ColorQ[col],img_Image:>Blend[{RemoveAlphaChannel[img,White],ConstantImage[White,ImageDimensions[img]]},t]}


(* ::Chapter:: *)
(*3D elements*)


(* ::Section::Closed:: *)
(*SLM*)


(* ::Input::Initialization:: *)
frame3D[w_,h_,d_,scale_]:=Module[{pts,coords,reg},
pts={##,-d/2}&@@@({{-w,-h},{w,-h},{w,h},{-w,h}}/2);
pts=Join[pts,TranslationTransform[{0,0,d}][pts],ScalingTransform[{scale,scale,1}][pts],TranslationTransform[{0,0,d}]@ScalingTransform[{.8,.8,1}][pts]];coords={{1,2,6,5},{2,3,7,6},{3,4,8,7},{4,1,5,8},{1,2,3,4},{5,6,7,8}};
reg=RegionDifference[Polyhedron[pts,coords],Polyhedron[pts,Map[Plus[#,8]&,coords,{2}]]];
reg
];


(* ::Input::Initialization:: *)
getSLM[tex_,w_:1,h_:.9,d_:.05,scale_:.8]:=Module[{pts},
pts={##,0}&@@@((1+scale)/2{{-w,-h},{w,-h},{w,h},{-w,h}}/2);
Rotate[#,\[Pi]/2,{1,0,0}]&@{Gray,EdgeForm[],frame3D[w,h,d,scale],Texture[Rotate[tex,-\[Pi]/2]],Polygon[pts,VertexTextureCoordinates->RotateRight[{{0,0},{1,0},{1,1},{0,1}}]]}
];


(* ::Section::Closed:: *)
(*Beams*)


(* ::Input::Initialization:: *)
tubeBeamFun[pt_,opacity_:.5,pt2_:pt2]:={CapForm["Square"],Glow[RGBColor[1, 0, 0]],RGBColor[1, 0.5, 0],JoinForm["Miter"],Opacity[opacity],Tube[{pt2,pt},rad]}


(* ::Input::Initialization:: *)
getHelix[k_:1]:=getHelix[k]=Module[{plot,helix,rad=rad},
plot=ParametricPlot3D[Evaluate[Table[{r Cos[2\[Pi]/k t+j 2\[Pi]/k],r Sin[2\[Pi] /k t+j 2\[Pi]/k],t},{j,0,Abs[k]-1}]],{t,0,1},{r,0,1},Mesh->None,PlotStyle->Orange,PlotPoints->If[k==1||k==-1,25,Automatic]];
plot=First[Cases[InputForm[plot],_GraphicsComplex,Infinity,1]];
helix=Scale[Translate[plot,Table[{0,0,0.8+i},{i,7}]],{0.8rad,0.8rad,0.2},{0,0,0}];
helix
]


(* ::Input::Initialization:: *)
helicalWavefrontFun[k_,t_,initpt_,finpt_]:=Module[{wfs,speed=2},
wfs=Rotate[getHelix[k],-Sign[k]speed t,{0,0,1}];
Translate[#,pt2]&@Rotate[wfs,{{0,0,1},finpt-initpt}]
]


(* ::Input::Initialization:: *)
(*disk=ResourceFunction["Disk3D"][{0,0,0},0.8rad,{{1,0,0},{0,0,1}}];*)
disk=BSplineSurface[{{{-0.16,0.,0.},{-0.16,0.,-0.16},{0.,0.,-0.16}},{{-0.16,0.,0.16},{0.0178,0.,0.},{0.16,0.,-0.16}},{{0.,0.,0.16},{0.16,0.,0.16},{0.16,0.,0.}}},SplineKnots->{{0,0,0,1,1,2},{0,0,0,1,1,2}},SplineWeights->{{1,1/Sqrt[2],1},{1/Sqrt[2],1,1/Sqrt[2]},{1,1/Sqrt[2],1}}];


(* ::Input::Initialization:: *)
flatWavefrontFun[t_,initpt_,finpt_,offset_:0,opacity_:.5,lenvec_:1]:=Module[{wfs,len=1.5,step,offsets,wfnum=8},
step=(*len*)1.1/wfnum;
If[lenvec==0,Return[{}]];
offsets=(offset+Mod[speed t+#,len])&/@Range[0,lenvec len,step];
wfs=Translate[disk,{0,#,0}&/@offsets];
{Orange,EdgeForm[Opacity[Rescale[opacity ,{0,.5},{0,1}]0.9,Red]],Opacity[opacity],Translate[#,initpt]&@Rotate[wfs,{{0,1,0},finpt-initpt}]}
]


(* ::Input::Initialization:: *)
ptrot[tloc_]:=RotationTransform[Rescale[tloc,{0,1},{0,-VectorAngle[pt3,pt4]}],{pt3,pt4},pt2][pt4];
flatFrontFun[tglob_,op_:0.8]:=flatWavefrontFun[tglob,pt2,pt4,0.4,op];
beamsFun[k_][tglob_]:={tubeBeamFun[pt4],flatFrontFun[tglob],If[k=!=None,helicalWavefrontFun[k,tglob,pt2,pt4],Nothing]};
beamsFun2[k_][tglob_]:={tubeBeamFun[pt4,.2],tubeBeamFun[pt3],flatWavefrontFun[tglob,pt2,pt4,0.45,.2],helicalWavefrontFun[k,tglob,pt2,pt3]};


(* ::Input::Initialization:: *)
getBeams[stage_,tloc_,tglob_]:=Module[{list,speed=speed,incbeam,incwavefronts},

list={
{tubeBeamFun[pt2+Clip[2tloc-1,{0,1}](pt4-pt2)],flatWavefrontFun[tglob,pt2,pt4,0.4,0.5,Clip[2tloc-1,{0,1}]]},
beamsFun[None][tglob],
beamsFun[1][tglob],
beamsFun[2][tglob],
beamsFun[-2][tglob],
beamsFun[-1][tglob],
beamsFun[None][tglob],
{tubeBeamFun[pt4,.2],tubeBeamFun[ptrot[tloc]],flatWavefrontFun[tglob,pt2,ptrot[tloc],0.35,0.8],flatFrontFun[tglob,0.2]},
{tubeBeamFun[pt4,.2],tubeBeamFun[pt3],flatWavefrontFun[tglob,pt2,pt3,0.35,0.8],flatFrontFun[tglob,0.2]},
beamsFun2[1][tglob],
beamsFun2[1][tglob],
beamsFun2[2][tglob],
beamsFun2[-2][tglob],
beamsFun2[-1][tglob],
beamsFun2[1][tglob],
beamsFun2[1][tglob]
};
incbeam=tubeBeamFun[If[stage==1,pt1+Clip[2tloc,{0,1}](pt2-pt1),pt2],.5,pt1];
incwavefronts=flatWavefrontFun[tglob,pt1,pt2,0,0.5,If[stage==1,Clip[2tloc,{0,1}],1]];
Join[{incbeam,incwavefronts},list[[stage]]]
]


(* ::Chapter:: *)
(*2D elements*)


(* ::Section::Closed:: *)
(*Side slide*)


(* ::Input::Initialization:: *)
slideAsideFun[times_,funs_,def_:{}]:=Module[{aux,x},
aux=MapThread[{#1[Rescale[x,{#2,#3},{0,1}]],x<#3}&,{funs,times,Append[Rest[times],1]}];
With[{p=Piecewise[aux,def]/.x->#},p&]
];


(* ::Input::Initialization:: *)
slidePics[times_,pics_,ipos_]:=Module[{aux,x,funs,u,pos=Identity[ipos],def},

funs=MapThread[Function[{u},{Translate[#,#2+u(#3-#2)]}]&,{pics,pos,Append[Rest[pos],Last[pos]]}];
def=Translate[Last[pics],Last[pos]];
slideAsideFun[times,funs,def]
];


(* ::Input::Initialization:: *)
slidePicsAccum[itimes_,pauses_,ipics_,ipos_]:=Module[{aux,x,funs,u,pos,def,pics=FoldList[Append,ipics],times},

times=Riffle[itimes,itimes+pauses];
pics=Riffle[pics,pics];
pos=Riffle[ipos,ipos];

If[Last[pauses]==0,{times,pics,pos}=Most/@{times,pics,pos}];
slidePics[times,pics,pos]
];


(* ::Input::Initialization:: *)
slideAsideTwo[itimes_,pauses_,tfade1_,tfade2_,k1_,k2_,k3_,finpos_:-1]:=Module[{slideTwo,gr1,grMid,gr2,gr3},

gr1=If[k1===None,{},texFun[texSmoothFun[k1],{0,0}]];
grMid=Text[Style["\[Rule]",40,FontColor->Black],{-finpos/2,0}];
gr2=texFun[texSmoothFun[k2],{-finpos,0}];
gr3=texFun[texSmoothFun[k3],{-finpos,0}];

slideTwo=slidePicsAccum[itimes,pauses,{{Translate[#,{finpos,0}]&@gr2},{grMid,gr3}},{{.25,1.5},{.25,1.5}+{finpos,0}}];

Piecewise[{
{Translate[#,{.25,1.5}+{finpos,0}]&@{fadeFun[{gr1,If[k1===None,{},grMid]},Rescale[#,{0,tfade1},{0,1}]],gr2},#<tfade1},
{texFun[texSmoothFun[k2],{.25,1.5}],#<tfade2},
{slideTwo[Rescale[#,{tfade2,1},{0,1}]],True}
}]&
]


(* ::Section::Closed:: *)
(*Textures*)


(* ::Input::Initialization:: *)
texFun[tex_,pos_,pars___]:={Texture[tex],pars,EdgeForm[],Polygon[TranslationTransform[pos][0.6{{-1,-1},{1,-1},{1,1},{-1,1}}/2],VertexTextureCoordinates->{{0,0},{1,0},{1,1},{0,1}}]}


(* ::Input::Initialization:: *)
getHologram[charge_,grating_:0,disk_:True,colorFun_:GrayLevel]:=getHologram[charge,grating,disk,colorFun]=Module[{slope,lim=2.5,plotPoints=70,imgSize=200},
slope=Rescale[grating,{0,1},{0,12}];
If[charge==0&&grating==0&&Not@disk,
ConstantImage[Gray,{imgSize,imgSize}]
,
DensityPlot[Evaluate[Mod[slope y+Arg[Exp[-I charge ArcTan[-x,y]]],2\[Pi],-\[Pi]]],{y,-lim,lim},{x,-lim,lim},
Exclusions->(#1<=0&&#2==0&),PlotPoints->If[grating>0,2plotPoints,plotPoints],PlotRangePadding->None,
Frame->None,ColorFunction->colorFun,MaxRecursion->Automatic,RegionFunction->If[disk,(#1^2+#2^2<=lim^2&),True],ImageSize->imgSize]
]
];
orangeLevel=Blend[{Orange,Black},#]&;


(* ::Input::Initialization:: *)
slidingHolos=With[{opos={.25,1.5}},
slidePicsAccum[{0,0.5,0.95},{0.02,0.02,0},
{
{texFun[texGratingFun[1],opos]},
{Text[Style["+",40,FontColor->Black],opos+{0.5,0}],texFun[texSmoothFun[1],opos+{1,0}]},
{Text[Style["=",40,FontColor->Black],opos+{1.5,0}],texFun[texSLM[1],opos+{2,0}]}
}
,{{0,0},{-1,0},{-2,0}}]
];


(* ::Input::Initialization:: *)
sumHolo[k_]:=With[{opos={.25,1.5}+{-2,0}},
{
{texFun[texGratingFun[1],opos]},
{Text[Style["+",40,FontColor->Black],opos+{0.5,0}],texFun[texSmoothFun[k],opos+{1,0}]},
{Text[Style["=",40,FontColor->Black],opos+{1.5,0}],texFun[texSLM[k],opos+{2,0}]}
}
];


(* ::Input::Initialization:: *)
texSLM[k_]:=texSLM[k]=Rasterize[getHologram[k,1,False],Background->None]
texGratingFun[n_]:=texGratingFun[n]=Rasterize[getHologram[0,n,False],Background->None]
texSmoothFun[k_]:=texSmoothFun[k]=Image@getHologram[k,0,False];
texOrange[k_]:=texOrange[k]=Rasterize[getHologram[k,0,True,Blend[{Orange,Black},#]&],Background->None]


(* ::Input::Initialization:: *)
texOrangePlusGauss[k_]:=texOrangePlusGauss[k]=Rasterize[Graphics[{
Inset[texOrange[0],ImageScaled[{.6,.4}],ImageScaled[{1,1}/2],1.5],
Inset[texOrange[k],ImageScaled[{.4,.6}],ImageScaled[{1,1}/2],1.5]
}],Background->None]


(* ::Section::Closed:: *)
(*Labels*)


(* ::Input::Initialization:: *)
getTextures[stage_,t_]:=Module[{list},
list={texSmoothFun[0],texSmoothFun[0],texSmoothFun[1],texSmoothFun[2],texSmoothFun[-2],texSmoothFun[-1],texSmoothFun[0],texGratingFun[t],texGratingFun[1],texSLM[1],texSLM[1],texSLM[2],texSLM[-2],texSLM[-1],texSLM[1],texSLM[1]};
list[[stage]]
]


(* ::Input::Initialization:: *)
slide[k1_,k2_,k3_]:=slideAsideTwo[{0,.5},{0.02,0 0.02},.3,.85,k1,k2,k3];
textlab[text_]:=Text[Framed[Style[text,50,FontColor->Black,FontFamily->"Times"],FrameStyle->Black],{.8,1.5}];
textlab[text_,tt_]:=fadeFun[textlab[text],tt];
tor2[k_,addGauss_:False]:=texFun[If[addGauss,texOrangePlusGauss[k],texOrange[k]],{.85,-.9}];
tor3[k_]:=texFun[texOrange[k],{-0.5,-.9}];


(* ::Input::Initialization:: *)
getLabels[stage_,t_,tex_]:=Module[{list,
arr1=arrowFun[{{-1.917,0.638},{-1.817,0.825},{-1.53,0.845},{-1.383`,0.6583`}}],
arr3=arrowFun[{{-0.8044`,-0.61`},{-0.8489`,-0.3789`},{-0.6978`,-0.1389`},{-0.4933`,-0.1389`}}],
arr2=arrowFun[{{1.151`,-0.5878`},{1.302`,-0.4056`},{1.053`,-.2}}],
tf=texFun[tex,{.25,1.5},EdgeForm[{Thick,Black}]]},

list={
{arr1,tf},
{arr1,arr2,tor2[0],slide[None,0,1][t]},
{arr1,arr2,tor2[1,True],textlab["+1",t],slide[0,1,2][t]},
{arr1,arr2,tor2[2,True],textlab["+2",t],slide[1,2,-2][t]},
{arr1,arr2,tor2[-2,True],textlab["-2",t],slide[2,-2,-1][t]},
{arr1,arr2,tor2[-1,True],textlab["-1",t],slide[-2,-1,0][t]},
{arr1,arr2,tor2[0],tf},
{arr1,arr2,tor2[0],tf},
{arr1,arr2,arr3,tor2[0],tor3[0],slidingHolos[t]},
{arr1,arr2,arr3,tor2[0],tor3[1],sumHolo[1],textlab["+1"]},
{fadeFun[{arr1,arr2,arr3,tor2[0]},t],tor3[1],sumHolo[1],textlab["+1"]},
{sumHolo[2],textlab["+2"],tor3[2]},
{sumHolo[-2],textlab["-2"],tor3[-2]},
{sumHolo[-1],textlab["-1"],tor3[-1]},
{fadeFun[sumHolo[+1],t],tf,textlab["+1"],tor3[1]},
fadeFun[{tf,textlab["+1"],tor3[1]},t]
};
list=Join[{texFun[texOrange[0],{-2.1,.3}]},#]&/@list;

list[[stage]]
]


(* ::Chapter:: *)
(*Composition*)


(* ::Section::Closed:: *)
(*Scene*)


(* ::Input::Initialization:: *)
scene[stage_,t_,tglob_]:=Module[{incbeam,reflbeam,reflbeam2,wavefrontsIn,wavefronts1,wavefronts2,gr3D,tex,texOut,texOut2,gr,imgRes=50,img},

tex=getTextures[stage,t];
gr3D=Graphics3D[{getSLM[tex],getBeams[stage,t,tglob]},
Lighting->{{"Point",White,2{-1,-1,0}},{"Point",White,2{1,-1,0}},{"Point",White,2{0,0,1}}},Boxed->False,ViewVertical->{0,0,1},ViewVector->{{10,-17,8},{0,0,0}},PlotRange->{{-1.5,1.5},{-1.8,0.2},{-1,1}}
];
gr=Graphics[{Inset[gr3D,{.25,.5},ImageScaled[{1,1}/2],4],getLabels[stage,t,tex]},ImageSize->900,PlotRange->{{-2.5,1.5},{-1.5,1.9}}];

(*rasterization is done basically only because of the very last stage where the whole scene fades away, with Graphics is it more complicated than with Image*)
img=Rasterize[gr,ImageResolution->imgRes];
If[stage==finalStageIdx,Blend[{img,ConstantImage[White,ImageDimensions[img]]},t],img]
]


(* ::Input:: *)
(*(*Manipulate[scene[stage,t,tg],{stage,1,16,1,Appearance\[Rule]"Open",ControlsRendering\[Rule]"Generic"},{{t,0.6},0,1,Appearance\[Rule]"Open",ControlsRendering\[Rule]Automatic},{tg,0,1,Appearance\[Rule]"Open"}]*)*)


(* ::Section::Closed:: *)
(*Generation and export*)


(* ::Input::Initialization:: *)
animation[t_]:=Module[{stage,tloc,num=finalStageIdx},
{stage,tloc}=QuotientRemainder[t,1/num];
stage+=1;
tloc*=num ;
If[stage==num+1,stage-=1;tloc=1];
tloc=Clip[1.2tloc,{0,1}];

scene[stage,tloc,15t]
]


(* ::Input:: *)
(*(*Manipulate[animation[t],{t,0,1}]*)*)


(* ::Input:: *)
(*numsamples=200-1;*)
(*frames=Table[animation[t],{t,0,1,1/numsamples}];*)
(*{time,frames}=AbsoluteTiming[Rasterize[#,ImageSize->500]&/@frames];*)


(* ::Input:: *)
(*time*)


(* ::Input:: *)
(*filename="anim.gif";*)
(*SetDirectory[NotebookDirectory[]]*)
(*SystemOpen@Export[filename,frames,AnimationRepetitions->Infinity,"DisplayDurations"->.25]*)

Didascalie

Aggiungi una brevissima spiegazione di ciò che questo file rappresenta
Generation of OAM beams using a spatial light modulator

Elementi ritratti in questo file

raffigura

Cronologia del file

Fare clic su un gruppo data/ora per vedere il file come si presentava nel momento indicato.

Data/OraMiniaturaDimensioniUtenteCommento
attuale21:32, 20 gen 2022Miniatura della versione delle 21:32, 20 gen 2022503 × 428 (5,6 MB)JozumBjadaCross-wiki upload from cs.wikipedia.org

Nessuna pagina utilizza questo file.

Utilizzo globale del file

Anche i seguenti wiki usano questo file:

Metadati